色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The surface roughness of a part is a technical requirement that measures the surface processing quality of the part. It significantly impacts the part’s fit, wear resistance, corrosion resistance, and sealing performance. The factors that affect surface roughness mainly include the workpiece material, cutting parameters, machine tool performance, and tool material and geometry parameters.

During the actual machining process, the cutting depth, feed rate, and spindle speed are predetermined and kept constant throughout the cutting process. Therefore, it is essential to optimize the combination of factors affecting surface roughness to obtain the optimal surface quality value. This article begins with the calculation formula of surface roughness and its relationship with chip thickness. It further explores the relationship between surface roughness, cutting depth, and feed rate. Additionally, it examines the impact of various factors on surface roughness through experimentation.

How To Calculate the Surface Roughness in Ball-end Milling 2

Mechanism of Surface Roughness Generation

Mechanism of Residual Height Generation

In curved surface machining, the residual height is mainly formed by the tool moving along the tool path and leaving material on the surface of the workpiece unremoved. As shown in Figure 1, the following parameters are defined: P as the tool contact point, R as the radius of the curved surface, θ as the angle between two radius lines, and n as the normal vector at point P. The stepover distance is represented by d, and it is closely related to the residual height h. Based on Figure 2(a), we can derive the following relationship:

How To Calculate the Surface Roughness in Ball-end Milling 3

In the equation: r represents the tool radius, and kh represents the normal curvature of the machining surface along the cutting feed direction.

 

 

How To Calculate the Surface Roughness in Ball-end Milling 4

When using the sectional plane method to generate tool paths, calculating the normal curvature (kh) can be challenging. In practical machining, an approximation is often used, where a plane approximates the surface between two adjacent tool paths, as shown in Figure 2(b). The stepover distance is considered the normal distance between the sectional planes. In this case, the residual height (h) can be described by the following equation:

How To Calculate the Surface Roughness in Ball-end Milling 5

1.2Calculation of Surface Roughness

Due to the presence of residual height, the surface of the part after mechanical machining will have many uneven peaks and valleys. This microscopic geometric shape is known as surface roughness, as shown in Figure 3. The parameter Ra is defined as the surface roughness, which is given by:

How To Calculate the Surface Roughness in Ball-end Milling 6

In the equation, L represents the sampling length.

How To Calculate the Surface Roughness in Ball-end Milling 7

Zooming in on Figure 3, we obtain Figure 4. When h’ is less than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 86

 

How To Calculate the Surface Roughness in Ball-end Milling 9

When h” is greater than Y et, we can deduce:

How To Calculate the Surface Roughness in Ball-end Milling 10

In the equation, E represents the area of the region. Since y_a needs to ensure that the area above and below the central line is equal, i.e.,

How To Calculate the Surface Roughness in Ball-end Milling 11

In equation (6), p’ and p” are weighting factors. p is closely related to the chip thickness h. After a series of derivations, we can obtain

How To Calculate the Surface Roughness in Ball-end Milling 12

the expression of the sampling area is as follows

How To Calculate the Surface Roughness in Ball-end Milling 13

In the expression:

How To Calculate the Surface Roughness in Ball-end Milling 14

Substituting equations (4) and (5) into equation (8), we obtain:

How To Calculate the Surface Roughness in Ball-end Milling 15

After substituting equation (7) into equation (9) and simplifying through calculations, the relationship between the sampling area of surface roughness and the chip thickness is obtained as follows:

How To Calculate the Surface Roughness in Ball-end Milling 16

According to the above equation, it can be seen that there is a very simple relationship between surface roughness and chip thickness. When milling with a ball-end cutter, the feed per tooth is constant, while the chip thickness varies continuously based on the cutting depth and feed rate.

 

Experimental Data and Analysis

Experimental Conditions

Under steady-state cutting conditions, by varying the cutting depth and feed rate, the surface roughness values are measured for different parameter combinations. The micro-topography of the machined surfaces is observed using a three-dimensional profilometer, and the influence of cutting parameters on surface roughness is analyzed.

The experiment is conducted on the edge part shown in Figure 5, using a FANUC precision machining center machine. The workpiece material is 45# steel, and a high-speed steel milling cutter with a diameter of 12.5mm is selected as the cutting tool. The spindle speed is set at 800 r/min, and the cutting depth varies from 1mm to 6mm. Different feed rates are used for cutting at depths of 1mm, 2mm, 4mm, and 6mm, as illustrated in Figure 6.

 

Data Measurement

After completing the machining of the part, measurement points are selected on the curved section of the part shown in Figure 5. For each set of experimental conditions, data at these measurement points are measured twice, and the average value is taken as the experimental value. The experimental data are presented in Table 1

How To Calculate the Surface Roughness in Ball-end Milling 17

 

How To Calculate the Surface Roughness in Ball-end Milling 18

 

How To Calculate the Surface Roughness in Ball-end Milling 19

 

Data Analysis

From the experimental data, it can be observed that when machining the part using a ball-end cutter and keeping the feed rate constant, the surface roughness increases with an increase in cutting depth (see Figure 7). At lower cutting depths, the surface roughness values are smaller, but excessively small cutting depths result in longer cutting times and lower processing efficiency.

Although there is a certain difference between the experimental values and theoretical values in this study, they are relatively close. Hence, the provided calculation formula in this study can be adopted. For the selected workpiece in this study, the optimum surface roughness is achieved when the cutting depth is 2mm, and the feed rate is 700mm/min.

 

 

roughness

 

3conclusion

The study investigated the influence of various machining parameters on surface roughness during the milling process of the workpiece. The theoretical impact of surface roughness on the surface quality of the workpiece was explored, and a theoretical calculation formula for surface roughness was derived based on its generation mechanism.

Using the trial machining method and different combinations of parameter data, the surface roughness of the machined parts was measured using a three-dimensional profilometer. The calculated theoretical values from the formula were then compared with the experimental values.

The research demonstrated that both the calculation formula and the machining method are feasible and effective in predicting and controlling surface roughness during the milling process.

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

狠狠做深爱婷婷丁香综合-成人日韩亚洲在线观看-蜜桃传媒mv在线免费-国产日韩入口一区二区| av免费在线观看网站大全-日本av一区二区三区视频-国产精品日韩一区二区在线-亚洲av永久精品一区二区三区| 国产精彩自拍视频在线-岛国视频免费在线播放-91久久精品国产综合另类专区-午夜福利欧美激情福利| 国产精品18禁免费无摭挡-国产精品久久久看三级-国产亚洲精品熟女国产成人-国产亚洲精品不卡中文| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 四虎成人免费永久视频-婷婷激情五月天久久综合-亚洲欧美自拍偷拍丝袜-日韩精品午夜视频一区二区三区| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 国产精品一区在线观看网址-亚洲国产日韩精品理论在线-在线播放视频在线观看视频-黄色片三级三级免费看| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 亚洲av高清网站夜夜去-拍国产乱人伦偷精品视频-成人日韩欧美在线观看-无遮挡国产精品一级二级三级视频| 偷拍日韩女生厕所尿尿-水蜜桃一区二区三区四区-亚洲成人色黄网站久久-久久久国产综合午夜精品| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 久久精品国产普通话对白-丰满人妻中文字幕一区二区-国产日本精品视频在线观看-香港免费毛片在线观看| 国产一区二区三区四区在线播放-国语精品国内自产视频-可以免费看黄的网久久-久久久亚洲av三吉彩花| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 欧洲人妻中文字幕在线-白白色永久免费视频播放-精品日韩免费在线视频-风间由美性色一区二区三区| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 国产在线精品一区二区中文-亚洲小说欧美另类激情-97碰久日韩视频在线观看-日本一道本高清不卡区| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 一区二区三区四区蜜桃av-国产av无套内射成人久久-亚洲第一大片一区二区三区三州-国产福利黄色片午夜在线观看| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 91精品国产免费人成网站-91国产小视频在线看-亚洲宅男一区二区三区天堂-成人午夜精品免费观看| 国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频|