色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Why choose cemented carbide saw blades to cut high-temperature alloys?

Currently, in mechanical manufacturing, due to the rapid updating and upgrading of products, there are higher requirements for the selection of parts. Particularly in the manufacturing of industries such as aerospace, large power stations, and ships, some difficult-to-machine materials like high-temperature alloys, titanium alloys, heat-resistant stainless steels, and composite materials have been widely used. Among them, the efficient processing of widely used and commonly employed high-temperature alloy materials has received more attention.

Using high-performance high-speed steel bimetal saw blades (with M42 as the edge material) to cut difficult-to-machine high-temperature alloys results in low cutting efficiency and a very short service life. Subsequently, saw blades made of cemented carbide with high hardness were chosen. Through testing and practical application, cemented carbide saw blades have achieved significant results in the blanking processing of high-temperature alloys, meeting the requirements of production schedules.

How Do Cemented Carbide Saw Blades Cut High-Temperature Alloys? 2

?????????? ??????
4 Use of Cemented Carbide Saw Blades Using cemented carbide saw blades for sawing and blanking high-temperature alloy materials is an efficient and ideal process method. However, improper use can lead to rapid wear of the saw blade’s teeth and even cause the saw belt to break, which not only fails to achieve the expected results but may also result in significant losses. Therefore, the correct use of cemented carbide saw blades is very important. There are strict requirements for using saw blades, which are mainly in the following three aspects:

Design and Selection of Cemented Carbide Saw Blades

Cemented carbide saw blades have different materials and structures. In practical applications, we have found that not every type of cemented carbide saw blade can achieve good results in the blanking processing of high-temperature alloys. Only by making reasonable choices and using them properly can the desired results be obtained. Therefore, we have selected and compared four aspects: the structure of the saw blade, the form of the tooth shape, the material, and the reasonable selection of cutting parameters. The details are as follows:

Tool Structure

Cemented carbide saw blades typically adopt a tipped and welded structure. The tips of the teeth on cemented carbide saw blades have the advantages of high hardness, high wear resistance, and high fatigue resistance. However, their main drawbacks are brittleness, low strength, and poor resistance to impact.

After testing and comparative application (especially based on the final sawing blanking data comparison results), we believe that for the blanking of high-temperature alloys, the saw blade structure is best suited with coarse teeth and variable pitch cemented carbide saw blades. The reason we believe this is optimal is that during the sawing blanking of high-temperature alloys (particularly nickel-based high-temperature alloys), the chips have strong adhesion, making it difficult for the chips to be discharged smoothly. The intermittent formation and disappearance of built-up edge can easily cause the cutting edge to chip and the tool’s flank wear to intensify. Choosing coarse teeth not only increases the strength of the cutting edge but also enlarges the chip space, facilitating the use of a larger feed rate to improve cutting efficiency. The adoption of variable pitch can reduce cutting noise and vibration, making the cutting process more stable, which is beneficial for improving the durability of the tool. A schematic diagram of the variable pitch saw blade structure can be seen in Figure 1.

How Do Cemented Carbide Saw Blades Cut High-Temperature Alloys? 3

Selection of Tool Tooth Shape

Common tooth shapes for saw blades include standard teeth, hook-shaped teeth, and trapezoidal teeth, as shown in Figure 2.

  1. Standard teeth have a cutting approach angle g=0°, with the tooth face perpendicular to the substrate, and the tooth slots are deep and narrow.
  2. Hook-shaped teeth have a cutting approach angle g=5°~10°, with the tooth slots deep and wide.
  3. Trapezoidal teeth have a cutting approach angle g=10°~15° and a back angle a=6°~8°, providing high tooth strength, suitable for heavy cutting.

For the processing of high-temperature alloy materials, in addition to selecting high-strength cemented carbide materials for the saw blades, the choice of tooth shape is also very important. Trapezoidal teeth have sufficient strength and are less prone to chipping during cutting. Due to the larger approach angle, the cutting resistance is also smaller than that of standard straight teeth. Practical verification has also proven that the choice of trapezoidal teeth results in better cutting performance compared to the other two tooth shapes.

 

Tool Material Grades

The grades of cemented carbide suitable for cutting high-temperature alloy materials mainly fall into two categories: Type M and Type K according to the ISO standard (now recommended as Type S). Based on the results of sawing comparison tests, the improvement in cutting efficiency between the two types of tool grades is not significant. However, in terms of sawing service life, the saw blades made of material equivalent to grade M15-M30 have a 15%~20% longer life span compared to those made of material equivalent to grade K05-K20 (when processing high-temperature alloys of the same specification and grade).

 

Selection of Cutting Parameters

The rational selection of cutting parameters is crucial for the blanking of high-temperature alloys. Proper cutting parameters ensure normal blanking of workpieces, significantly improve cutting efficiency and tool life, and also reduce the harsh noise generated by the adhesion and friction of chips between the tool and the workpiece during blanking. Based on our experimental application results for various nickel-based high-temperature alloy grades (considering efficiency and tool life comprehensively), the selected rational cutting parameters are as follows:

Cutting linear speed: 15~20 m/min

Feed rate (material removal rate): 6~8 cm2/min

The above cutting parameters have been determined through long-term experimental applications and are considered to be economically viable.

How Do Cemented Carbide Saw Blades Cut High-Temperature Alloys? 4

Actual Tool Benefits

Through the aforementioned four aspects of work, the use of cemented carbide saw blades for processing high-temperature alloys has achieved significant economic effects in the steam turbine factory:

After testing and comparing multiple data results, the current cemented carbide saw blades used for processing high-temperature alloys have improved the cutting efficiency by 5 to 8 times compared to the previously used bimetal saw blades. For example, when processing a GH4169 nickel-based high-temperature alloy blank with dimensions of 140×245, the original M42 bimetal saw blade took about 6 to 8 hours to blank one piece. However, with the selected cemented carbide saw blade for processing high-temperature alloys, the blanking time for one workpiece is only about 1 hour. Moreover, what is more prominent is the improvement in tool life.

When processing blanks of the above-mentioned grades and specifications, the original M42 bimetal saw blade could only blank one piece, whereas the current cemented carbide saw blade can generally blank 20 to 24 pieces (under reasonable cutting parameters and proper operation, one saw blade can even blank 40 to 50 pieces). Although the price of the current cemented carbide saw blade is about 5 times higher than that of the bimetal saw blade, in terms of cost-performance ratio and comprehensive economic benefits (especially as demonstrated by the comparison of the above typical example), using cemented carbide saw blades to process high-temperature alloys is very cost-effective. It achieves the goal of low cost, high tool life, and efficient processing.

carbide saw blade
carbide saw blade

Use of Cemented Carbide Saw Blades
Using cemented carbide saw blades for sawing and blanking high-temperature alloy materials is an efficient and ideal process method. However, improper use can lead to rapid wear of the saw blade’s teeth and even cause the saw belt to break, which not only fails to achieve the expected results but may also result in significant losses. Therefore, the correct use of cemented carbide saw blades is very important. There are strict requirements for using saw blades, which are mainly in the following three aspects:

Requirements for the Machine Tool
a. The sawing machine must have good rigidity and a certain level of accuracy to meet the requirements for stable processing with cemented carbide saw blades.
b. Select a sawing machine with a suitable power and specification based on the diameter (cutting area) of the workpiece.
c. The machine tool must be equipped with a good chip removal, cooling system, and saw blade guiding device.

Requirements for Operating the Use of Cemented Carbide Saw Blades
a. The workpiece must be clamped securely, and after clamping, check whether the clamping points (surfaces) are in the middle and upper part of the workpiece to ensure stability during processing.
b. Break-in of the saw blade: New saw blades must go through a break-in period before normal cutting to prevent premature damage to the teeth. After the break-in process, the teeth will wear normally; without it, the teeth will be destroyed prematurely. The feed rate during the break-in period should be 20%~30% of the normal feed rate.
c. Selection of tension force:Excessive tension can cause the saw belt to break; insufficient tension can damage the saw belt or cause cutting deviation. When using a cemented carbide band saw, the tension must be adjusted to 2200~2500 kg/m2.
d. Cooling and chip flushing during cutting: When using a cemented carbide band saw to blank high-temperature alloy materials, in order to reduce the cutting temperature, cutting resistance, and extend the life of the band saw, water-based extreme pressure cutting fluid must be continuously applied during sawing. Additionally, the chips produced during sawing should be cleaned synchronously with a steel brush.

Rational Selection of Cutting Parameters
For blanking high-temperature alloy blanks, the selection of cutting parameters directly ensures the normal progress of sawing. Reasonable cutting parameters also achieve higher cutting efficiency and tool life. Due to the poor machinability of high-temperature alloy materials, the cutting parameters should be much lower compared to other alloy steel materials. Practice has proven that the cutting parameters recommended in the above examples are more reasonable. If the feed rate (material removal rate) is too low, the wear on the flank of the tool will increase. Moreover, increasing the cutting speed and feed rate will also increase the cutting force and cause the chip slot to clog, leading to chipping and reduced tool life.

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 97人妻一区二区精品视频-99久热精品视频在线观看-韩国av福利在线观看-亚洲熟妇自偷自拍另类| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 亚洲不卡av影院在线-久久精品伊人久久精品-亚洲国产日韩欧美三级-久久亚洲中文字幕精品二区| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 偷拍日韩女生厕所尿尿-水蜜桃一区二区三区四区-亚洲成人色黄网站久久-久久久国产综合午夜精品| 99久久亚洲综合精品成人网-国产性感丝袜在线观看-国产一区二区三区激情啪啪啪-久久香蕉综合国产蜜臀av| 国产亚洲欧美日韩俺去啦-91香蕉国产极品在线播放-国产夫妻生活自拍视频-永久免费的成年视频网| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 色综合久久中文综合网亚洲-久久精品午夜亚洲av-男人的天堂av日韩亚洲-91欧美激情在线视频| 日韩亚洲一区二区在线观看-欧美色一区二区三区在线-日韩av黄片在线观看-深夜成人福利在线观看| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 亚洲男人天堂av在线-中文字幕人妻熟女人妻免费视频-日韩一区二区三区少妇人妻-视频一区二区三区自拍偷拍| 日韩av观看一区二区三区四区-美丽的蜜桃3在线观看-久久人妻少妇嫩草av-欧美亚洲另类久久久精品| 久久av这里只有精品-国产三级视频不卡在线观看-精品亚洲综合久久中文字幕-在线观看日韩av系列| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频| 99热免费在线观看一区-麻豆久久一区二区三区蜜臀av-日本午夜福利在线视频-午夜精品福利综合在线导航| 日韩欧美熟妇在线观看-在线视频一区二区三区在线观看-欧美黄色在线观看网站-国产精品综合亚洲91| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 国产免费午夜精品福利视频-久热99精品免费视频-久久久免费精品国产色夜-亚洲黄色不卡在线观看| 人人澡人人妻人人干-亚洲中国麻豆美女av-日本淫妇一区二区三区-美女午夜福利偷偷要网站| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 国产特黄特色特级黄大真人片-综合激情五月三开心五月-欧美日韩不卡视频合集-成熟的妇人亚洲性视频| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品|