色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

10 Important Material Proportions In Cemented Carbide Cutting tools 2

Cemented carbide cutting tools are very common in cutting operations, and the correct selection of cutting tools is crucial for ensuring processing efficiency and quality. By familiarizing ourselves with the composition ratio of cutting tool materials, we can select the appropriate tools to meet different machining requirements. Therefore, Zhangzhiyuan has compiled a list of 10 main materials and their common proportions to help find the best cutting tools.

 

Carbon Tungsten Carbide

Tungsten carbide is a material used for manufacturing cutting tools and is the primary material due to its ultra-high hardness and wear resistance, allowing the tools to remain sharp during high-intensity cutting processes.

(1) 60% – 70% Tungsten Carbide

Used for cutting tools that require higher toughness and impact strength, suitable for processing softer or more ductile materials.

① Suitable for processing: aluminum alloys, copper alloys, plastics, low-carbon steel, medium-carbon steel, etc.

② Suitable conditions: rough machining tools, such as turning tools, milling cutters, and tools for heavy cutting.

③ Representative tools: Sandvik GC4030 turning blade, Kennametal KCP25 series milling blade, etc.

(2) 70% – 80% Tungsten Carbide

Used for multi-functional cutting tools, balancing hardness and toughness, suitable for a wide range of cutting applications.

① Suitable for processing: stainless steel, alloy steel, tool steel, cast iron, etc.

② Suitable conditions: medium machining tools, such as general turning tools, milling cutters, and drilling cutters.

③ Representative tools: Sandvik GC1125 series blade, Kennametal KCPK30 milling blade.

(3) 80% – 85% Tungsten Carbide

Used for cutting tools with high hardness and wear resistance, suitable for processing harder metal materials.

① Suitable for processing: hardened steel, high-strength alloy steel, tool steel, and heat-resistant alloys, etc.

② Suitable conditions: finishing tools, high-speed cutting tools, and tools for difficult-to-machine materials, such as precision turning tools and high-speed milling cutters.

(4) 85% – 90% Tungsten Carbide

Used for cutting tools that require extremely high hardness and wear resistance, suitable for high-intensity and high-speed cutting applications.

① Suitable for processing: hardened steel, superhard alloys, titanium alloys, and nickel-based alloys, and other high-strength materials.

② Suitable conditions: high-hardness cutting tools, such as high-speed cutting tools used in aerospace and automotive manufacturing, and finishing tools that require extremely high wear resistance.

(5) 90% – 95% Tungsten Carbide

Used for cutting tools with ultra-high hardness and extreme wear resistance, suitable for processing very hard materials.

① Suitable for processing: superhard alloys, hardened steel, hard cast iron, and other high-hardness materials.

② Suitable conditions: ultra-precision machining tools, high-precision cutting tools, especially suitable for applications that require extreme wear resistance, such as mold manufacturing and precision machining of hard materials.

10 Important Material Proportions In Cemented Carbide Cutting tools 3

Cobalt Powder

Cobalt powder is a binder used in cemented carbide cutting tools that provides toughness and impact resistance, commonly used to balance the hardness and wear resistance of the tools.

(1) 3% – 6% Cobalt Powder

Used for cutting tools that require higher hardness and wear resistance, typically applied in finishing and high-speed cutting.

① Suitable for processing: high-strength alloy steel, hardened steel, stainless steel, etc.

② Suitable conditions: finishing tools, high-speed cutting tools, such as high-speed milling cutters and turning tools.

(2) 6% – 10% Cobalt Powder

This is the most common proportion range, suitable for multi-purpose tools, balancing hardness, toughness, and wear resistance, applicable to a wide range of cutting applications.

① Suitable for processing: general steel, cast iron, stainless steel, heat-resistant alloys, etc.

② Suitable conditions: turning tools, milling cutters, and drilling cutters, particularly suitable for processing medium to high-strength materials.

(3) 10% – 15% Cobalt Powder

Used for cutting tools that require higher toughness and impact strength, suitable for rough machining and heavy cutting tasks.

① Suitable for processing: high-hardness alloy steel, large castings, heat-resistant alloys, and other hard materials.

② Suitable conditions: rough machining tools, such as heavy cutting milling cutters, turning tools, and drills, especially used under high impact and high stress conditions.

(4) 15% – 25% Cobalt Powder

Used in specific cases, such as cutting tools that require extremely high toughness and impact resistance, particularly suitable for tools used under extreme heavy-duty cutting conditions.

① Suitable for processing: high-strength alloy steel, superhard materials, and other materials that require extremely high toughness and impact resistance.

② Suitable conditions: tools for rough machining, milling cutters with large cutting depths, turning tools, and cutting tools used under heavy-duty conditions.

10 Important Material Proportions In Cemented Carbide Cutting tools 4

Titanium Aluminum ?????

Titanium aluminum carbide is a compound formed by titanium, aluminum, and carbon elements, commonly used as a coating or blended material for cemented carbide cutting tools to enhance hardness, wear resistance, and oxidation resistance.

(1) Ti-Al-C Ratio 1:1:1

This ratio of titanium aluminum carbide is typically used for high-temperature resistant coatings and structural materials, offering excellent high-temperature stability and hardness, suitable for cutting processes in high-temperature environments.

① Suitable for processing: high-temperature alloys, heat-resistant steels, stainless steels, and other materials.

② Suitable conditions: tools that require high-temperature and wear resistance, such as high-speed cutting tools, drills, and milling cutters.

(2) Ti-Al-C Ratio 2:1:1

With a higher titanium content in this ratio, the material’s toughness and oxidation resistance are enhanced, making it suitable for high-speed cutting and the processing of medium-strength materials.

① Suitable for processing: stainless steels, titanium alloys, heat-resistant alloys, etc.

② Suitable conditions: multi-purpose tools, such as turning tools, milling cutters, and drilling cutters, particularly suitable for processing medium-strength materials.

(3) Ti-Al-C Ratio 3:1:2

This ratio increases the proportion of aluminum, improving the material’s high-temperature and corrosion resistance performance, making it suitable for applications that require high oxidation resistance.

① Suitable for processing: ultra-high-temperature alloys, difficult-to-machine materials, corrosion-resistant alloys, etc.

② Suitable conditions: cutting tools used under extreme conditions, such as cutting tools for the aerospace industry and tools for processing high-temperature alloys.

10 Important Material Proportions In Cemented Carbide Cutting tools 5

Nickel Powder

Nickel powder is a binder material commonly used in cemented carbide cutting tools that enhances the toughness and corrosion resistance of the tools, particularly suitable for use in environments with high processing requirements.

(1) Nickel Content 10% – 15%

This proportion of nickel powder is used to improve the corrosion resistance and toughness of cutting tools, suitable for processing non-ferrous metals and corrosion-resistant materials.

① Suitable for processing: aluminum alloys, copper alloys, stainless steels, and other materials.

② Suitable conditions: tools for precision machining and those that require high corrosion resistance, such as milling cutters and drills.

(2) Nickel Content 15% – 20%

At this ratio, the higher nickel content enhances the tool’s impact resistance and toughness, suitable for heavy-duty machining and cutting of difficult-to-machine materials.

① Suitable for processing: heat-resistant alloys, high-strength steels, stainless steels, etc.

② Suitable conditions: tools for heavy cutting and rough machining, suitable for processing under high-stress conditions.

(3) Nickel Content 20% – 25%

This proportion of nickel powder is used for tools that require extremely high toughness and durability, suitable for high-intensity machining under extreme conditions.

① Suitable for processing: ultra-high-strength alloys, difficult-to-machine materials, and materials that require fatigue resistance.

② Suitable conditions: high-precision tools and heavy-duty machining tools, applicable in fields such as aerospace and nuclear industries.

10 Important Material Proportions In Cemented Carbide Cutting tools 6

Trace Elements

?????????

Titanium is a lightweight, high-strength metal material with excellent corrosion resistance and biocompatibility. It is commonly used in the coatings and substrates of cemented carbide cutting tools to enhance the tool’s strength, wear resistance, and oxidation resistance.

(1) Titanium Content 10% – 15%

This proportion of titanium is used to enhance the wear resistance and strength of cutting tools, particularly suitable for use under high-temperature and high-stress conditions.

① Suitable for processing: stainless steels, titanium alloys, high-temperature alloys, and other materials.

② Suitable conditions: high-precision tools, high-temperature cutting tools, such as coated tools and milling cutters.

(2) Titanium Content 15% – 20%

At this ratio, the higher content of titanium is suitable for processing environments that require high strength and impact resistance.

① Suitable for processing: high-strength steels, nickel-based alloys, corrosion-resistant alloys, etc.

② Suitable conditions: heavy-duty machining tools, high-temperature resistant tools, particularly suitable for cutting applications in the aerospace and energy fields.

(3) Titanium Content 20% – 25%

This high proportion of titanium is mainly used to enhance the stability and durability of tools under extreme machining conditions, suitable for cutting difficult-to-machine materials.

① Suitable for processing: ultra-high-temperature alloys, difficult-to-machine metals, composite materials, etc.

② Suitable conditions: cutting tools used in extreme environments, such as tools for the nuclear industry, aerospace, and military applications.

10 Important Material Proportions In Cemented Carbide Cutting tools 7

Tantalum

Tantalum is a rare metal with a high melting point and good thermal conductivity, commonly used in the coatings and alloy compositions of cemented carbide cutting tools to enhance the tool’s wear resistance, heat resistance, and corrosion resistance, especially suitable for high-temperature and heavy-duty cutting environments.

(1) Tantalum Content 5% – 10%

This proportion of tantalum is used to enhance the wear resistance and thermal stability of cutting tools, suitable for cutting processes under medium to high temperatures.

① Suitable for processing: stainless steels, alloy steels, titanium alloys, etc.

② Suitable conditions: medium to high-temperature cutting tools, such as coated tools and milling cutters, applicable in industries like aerospace, automotive manufacturing, etc.

③ Representative tools: Iscar IC5500 series blades, Kennametal KCU15 blade.

(2) Tantalum Content 10% – 15%

At this ratio, the moderate content of tantalum further improves the tool’s corrosion resistance and oxidation resistance, suitable for use at even higher temperatures.

① Suitable for processing: high-temperature alloys, corrosion-resistant steels, stainless steels, etc.

② Suitable conditions: coated tools for extreme conditions, high-strength turning tools, particularly suitable for the energy and aviation fields.

③ Representative tools: Walter WKP35 series blades, Sandvik GC4225 blade.

(3) Tantalum Content 15% – 20%

This high proportion of tantalum is used for extreme high-temperature and heavy-duty cutting applications, ensuring that the tools maintain high performance under harsh processing conditions.

① Suitable for processing: ultra-high-temperature alloys, difficult-to-machine metals, wear-resistant materials.

② Suitable conditions: high-temperature coated tools for the nuclear industry and aerospace fields, heavy-duty milling cutters for extreme machining conditions.

10 Important Material Proportions In Cemented Carbide Cutting tools 8

Chromium

Chromium is a hard metal with good corrosion resistance and wear resistance, commonly used in the coatings and alloys of cemented carbide cutting tools to enhance the tool’s wear resistance, corrosion resistance, and oxidation resistance, particularly suitable for use under severe processing conditions.

(1) Chromium Content 5% – 10%

This proportion of chromium is used to enhance the tool’s wear resistance and corrosion resistance, suitable for moderate-intensity cutting applications.

① Suitable for processing: stainless steels, alloy steels, cast irons, etc.

② Suitable conditions: cutting tools with moderate strength, such as general turning tools and milling cutters.

(2) Chromium Content 10% – 15%

At this ratio, the increased content of chromium improves the tool’s oxidation resistance and durability, suitable for higher temperature and more severe processing environments.

① Suitable for processing: high-temperature alloys, corrosion-resistant steels, nickel-based alloys, etc.

② Suitable conditions: high-temperature cutting tools, corrosion-resistant coated tools, applicable in aerospace and energy fields.

(3) Chromium Content 15% – 20%

This high proportion of chromium is used for tools that require extremely high wear resistance and corrosion resistance, especially for processing at extreme temperatures.

① Suitable for processing: ultra-high-temperature alloys, corrosion-resistant alloys, hard metals, etc.

② Suitable conditions: high-temperature coated tools for the nuclear industry and aerospace fields, heavy-duty cutting tools for extreme conditions.

10 Important Material Proportions In Cemented Carbide Cutting tools 9

Niobium

Niobium is a rare metal with a high melting point, excellent heat resistance, and corrosion resistance. It is commonly used in the coatings of cemented carbide cutting tools or added as an alloying element to enhance the tool’s stability and oxidation resistance during high-temperature and high-intensity processing.

(1) Niobium Content 5% – 10%

This proportion of niobium is used to enhance the tool’s thermal stability and oxidation resistance, suitable for cutting operations under medium to high temperatures.

① Suitable for processing: stainless steels, titanium alloys, nickel-based alloys, etc.

② Suitable conditions: high-temperature cutting tools and corrosion-resistant coated tools, such as turning and milling cutters.

(2) Niobium Content 10% – 15%

At this ratio, the increased content of niobium significantly enhances the tool’s high-temperature strength and fatigue resistance, suitable for use under extreme processing conditions.

① Suitable for processing: high-temperature alloys, corrosion-resistant steels, stainless steels, etc.

② Suitable conditions: high-strength turning tools, heavy-duty milling cutters, especially suitable for high-demand fields such as aerospace and nuclear industries.

(3) Niobium Content 15% – 20%

This high proportion of niobium is used for tools that require extremely high heat resistance and oxidation resistance, particularly suitable for use in ultra-high temperatures and extreme processing conditions.

① Suitable for processing: ultra-high-temperature alloys, corrosion-resistant alloys, composite materials, etc.

② Suitable conditions: high-temperature coated tools under extreme environments, high-precision cutting tools, especially applicable in nuclear and aerospace industries.

10 Important Material Proportions In Cemented Carbide Cutting tools 10

????????

Vanadium is a metal element used to enhance the wear resistance and oxidation resistance of cutting tools. It is commonly added as an alloying additive or coating material to cemented carbide cutting tools to improve their performance during high-temperature and high-intensity processing.

(1) Vanadium Content 5% – 10%

This proportion of vanadium is used to enhance the tool’s wear resistance and oxidation resistance, suitable for cutting operations under medium to high temperatures.

① Suitable for processing: alloy steels, stainless steels, high-temperature alloys, etc.

② Suitable conditions: for turning and milling cutters, especially for high-temperature cutting and applications requiring high corrosion resistance.

(2) Vanadium Content 10% – 15%

At this ratio, the increased content of vanadium further improves the tool’s high-temperature strength and wear resistance, suitable for processing under extreme conditions.

① Suitable for processing: high-strength steels, corrosion-resistant alloys, nickel-based alloys, etc.

② Suitable conditions: for heavy-duty turning tools, milling cutters, especially for cutting under high-temperature and high-stress conditions.

(3) Vanadium Content 15% – 20%

This high proportion of vanadium is used for tools that require extremely high wear resistance and oxidation resistance, particularly suitable for use in ultra-high temperatures and extreme processing conditions.

① Suitable for processing: ultra-high-temperature alloys, corrosion-resistant materials, composite materials, etc.

② Suitable conditions: for high-temperature coated tools under extreme environments, high-precision cutting tools, especially applicable in aerospace and energy fields.

10 Important Material Proportions In Cemented Carbide Cutting tools 11

Titanium Carbide of Cutting tools

Titanium carbide is an ultra-hard material commonly used as a coating or as an alloy component in cemented carbide cutting tools. It significantly improves the tool’s hardness, wear resistance, and high-temperature performance, making it suitable for cutting operations in high-intensity and high-temperature environments.

(1) Titanium Carbide Content 10% – 15%

This proportion of titanium carbide is used to enhance the tool’s wear resistance and thermal resistance, suitable for cutting at high temperatures.

① Suitable for processing: stainless steels, alloy steels, titanium alloys, etc.

② Suitable conditions: for high-speed milling and turning tools, especially in cases where high wear resistance is required.

③ Representative tools: Sandvik GC1125 series blades, Walter WKK10 series blades.

(2) Titanium Carbide Content 15% – 20%

At this ratio, the content of titanium carbide is further increased, significantly improving the tool’s hardness and wear resistance, suitable for processing under extreme conditions.

① Suitable for processing: high-temperature alloys, hard metals, nickel-based alloys, etc.

② Suitable conditions: for heavy-duty cutting tools, precision milling cutters, especially for processing under high-temperature and high-stress conditions.

(3) Titanium Carbide Content 20% – 25%

This high proportion of titanium carbide is used for tools that require extremely high hardness and heat resistance, particularly suitable for use in extreme high-temperature and heavy-duty processing conditions.

① Suitable for processing: ultra-high-temperature alloys, composite materials, corrosion-resistant materials, etc.

② Suitable conditions: for high-temperature coated tools in aerospace, nuclear industry, and other fields, as well as high-precision cutting tools.

cutting tools

Gaining a deep understanding of the proportions of tool materials and making the optimal choice using a rational and scientific approach inherently reflects the scientific spirit of cutting machining professionals. The scientific spirit is not only about the thirst for knowledge and rigor in details, but also about the dedication to technological research and the pursuit of precision. Upholding the scientific spirit, cutting machining professionals continuously drive the progress of the manufacturing industry.What are the important proportions of cemented carbide materials?

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

精品国产一区二区三区吸毒-国产精品一品二区精品网站-偷拍美国美女厕所撒尿-日韩精品在线视频一二三| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 午夜精品福利激情视频-婷婷国产五月天网久久精品-国产av麻豆嫩草视频-av日本中文字幕在线| 成人一区二区三区激情视频-久久一区二区免费蜜桃-钢琴考级三级咏叹调视频-亚洲性感毛片在线视频| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 国产视色精品亚洲一区二区-激情艺术中心国产精品-国产农村一级特黄真人片-免费观看午夜视频在线| 亚洲天堂av免费在线看-操老熟女中国老太自拍-夫妻性生生活免费视频-日韩av有码高清在线| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 亚洲av色香一区二区三含羞草-av毛片在线观看网站-中文字幕一区二区人妻中文字-91精品人妻日韩一区二区| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 国产 av 一区二区三区-日韩黄色三级三级三级-久久精品视频这里只有精品-日韩精品中文字幕亚洲| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 亚洲av优优优色首页-国产精品国产三级av-国产自拍精品午夜福利-亚洲av高清一区二区三区| 激情六月综合激情六月-韩国国产日韩在线观看视频-久久精品国产亚洲av高清色-亚洲熟女乱码一区二区三区| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 人妻体内射精一区二区三区小视频-国产精品久久久久人人爽-日韩三级黄色一区二区三区-亚洲伊人色综合网收藏| 四虎永久在线高清国产精品-一区二区三区日本精品视频-国产午夜福利精品久久不卡-一区二区三区国产亚洲自拍| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| 久久女人天堂精品av-韩国中文字幕三级精品久久-国产成人精品日本亚洲i8-免费黄色一级大片91| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 加勒比日本东京热风间由美-少妇高潮喷水高清av-国产免费观看久久黄av-永久成人免费在线视频| 高清有码在线观看日本-精品少妇人妻一区av-色综合久久成人综合网-久久久国产精品人妻一区二区三区| 欧美国产日本韩国一区二区-麻豆天美东精91厂制片-亚洲成人自拍视频在线观看-娇妻互换享受高潮91九色| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 国产精品视频午夜福利-一本大道久久综合一区-成年深夜福利在线观看-国产传媒免费在线视频|