色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The fatigue strength of metal materials is very sensitive to various external and internal factors. External factors include the shape and size of the part, surface finish and service conditions, while internal factors include the composition of the material itself, organizational state, purity and residual stress. Subtle changes of these factors will cause fluctuations or even large changes in the fatigue properties of materials.

The influence of various factors on fatigue strength is an important aspect of fatigue research. This research will provide a basis for the reasonable structural design of parts, the correct selection of materials and the rational formulation of various cold and hot machining processes, so as to ensure the high fatigue performance of parts.

effect on fatigue of stress concentration

The conventional fatigue strength is measured by carefully machined smooth specimens. However, the actual mechanical parts inevitably have different forms of notches, such as steps, keyways, threads and oil holes. The existence of these notches causes stress concentration, so that the maximum actual stress at the root of the notch is much greater than the nominal stress borne by the part, and the fatigue failure of the part often starts from here.

???? ??????? ?? ???? ?? ???????? ???? ???? 7 ???? 2

Influence of size factor

Due to the inhomogeneity of the material structure and the existence of internal defects, the increase of the size will increase the failure probability of the material, thus reducing the fatigue limit of the material. The existence of size effect is an important problem in applying the fatigue data measured by small samples in the laboratory to large-scale actual parts. Because it is impossible to reproduce the stress concentration and stress gradient on the actual size parts on the small samples, the laboratory results are disconnected from the fatigue failure of some specific parts.

Influence on fatigue of surface processing state

There are always uneven machining marks on the machined surface, which are equivalent to tiny notches, causing stress concentration on the material surface, thus reducing the fatigue strength of the material. The test shows that for steel and aluminum alloy, the fatigue limit of rough machining (rough turning) is reduced by 10% – 20% or more than that of longitudinal fine polishing. The higher the strength of the material, the more sensitive it is to the surface finish.

Effect of chemical composition

There is a close relationship between the fatigue strength and tensile strength of materials under certain conditions. Therefore, under certain conditions, any alloy element that can improve the tensile strength can improve the fatigue strength of materials. Comparatively speaking, carbon is the most important factor affecting the strength of materials. However, some impurity elements which form inclusions in steel have adverse effects on fatigue strength.

Effect on fatigue of heat treatment and microstructure

Different heat treatment conditions will result in different microstructures. Therefore, the effect of heat treatment on fatigue strength is essentially the effect of microstructure. Although the same static strength can be obtained for materials with the same composition due to different heat treatment, the fatigue strength can vary in a considerable range due to different structures.

At the same strength level, the fatigue strength of flake pearlite is obviously lower than that of granular pearlite. The finer the cementite particles, the higher the fatigue strength.

7 factors affecting fatigue of metal materials 3

Effect of inclusions

The inclusion itself or the holes generated by it are equivalent to tiny notches, which will produce stress concentration and strain concentration under the action of alternating load, and become the crack source of fatigue fracture, causing adverse effects on the fatigue properties of materials. The influence of inclusions on fatigue strength depends not only on the type, nature, shape, size, quantity and distribution of inclusions, but also on the strength level of materials, the level and state of applied stress.

Different types of inclusions have different mechanical and physical properties, different properties from base metal, and different effects on fatigue properties. Generally speaking, plastic inclusions (such as sulfides) that are easy to deform have little effect on the fatigue properties of steel, while brittle inclusions (such as oxides, silicates, etc.) do great harm.

Inclusions with larger expansion coefficient than the matrix (such as sulfide) have less influence due to compressive stress in the matrix, while inclusions with smaller expansion coefficient than the matrix (such as alumina) have greater influence due to tensile stress in the matrix.

The compactness of inclusion and base metal also affects the fatigue strength. Sulfide is easy to deform and closely bond with the base metal, while oxide is easy to separate from the base metal, resulting in stress concentration. Therefore, from the type of inclusions, sulfide has little effect, while oxides, nitrides and silicates are more harmful.

Effect of surface property change and residual stress

In addition to the surface finish mentioned above, the influence of surface state also includes the change of surface mechanical properties and the influence of residual stress on fatigue strength. The change of surface mechanical properties can be caused by the difference of surface chemical composition and structure, or by deformation strengthening.

Surface heat treatment such as carburizing, nitriding and carbonitriding can not only increase the wear resistance of parts, but also improve the fatigue strength of parts, especially an effective means to improve the corrosion fatigue and biting corrosion resistance.

The influence of surface chemical heat treatment on fatigue strength mainly depends on loading mode, carbon and nitrogen concentration in the carburized layer, surface hardness and gradient, the ratio of surface hardness to core hardness, layer depth, and the size and distribution of residual compressive stress formed by surface treatment. A large number of tests show that as long as the notch is machined first and then treated by chemical heat treatment, generally speaking, the sharper the notch is, the more the fatigue strength will be improved.

The effect of surface treatment on fatigue performance is different under different loading modes. Under axial loading, the stress in the surface layer is the same as that under the layer because there is no uneven distribution of stress along the layer depth. In this case, the surface treatment can only improve the fatigue performance of the surface layer. Because the core material is not strengthened, the improvement of fatigue strength is limited. Under bending and torsion conditions, the stress distribution is concentrated in the surface layer. The residual stress formed by surface treatment and this additional stress are superimposed to reduce the actual stress on the surface. At the same time, due to the strengthening of surface materials, the fatigue strength under bending and torsion conditions can be effectively improved.

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 欧美日韩国产激情综合-九九精品国产亚洲av日韩-国产午夜激情免费视频-日本厕所偷拍尿尿视频| 蜜桃在线观看免费网站-亚洲成熟女性一级黄色蝶片-日韩一级黄色片天天看-一区二区三区在线视频观看美女| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 亚洲乱码日产精品一二三-日韩中文字幕综合在线-日韩欧美一级黄色录像-午夜福利在线视频观看| 深夜福利在线观看日韩-国产成人夜色高潮在线观看-熟女人妻少妇精品视频-97在线观看完整免费| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 粉嫩小粉嫩小国产小视-老熟妇人妻久久中文字幕麻豆网-蜜臀av在线播放国产-成年人的三级视频网站| 午夜狂情三级伦理涩之屋-亚洲国产精品美女嫩模综合在-久热在线观看免费视频-国产精品伦子一区二区三区| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人| 国产丝袜在线精品丝袜不卡-精品一区二区三区爆白浆-在线不卡小视频播放网站-视频二区中文字幕在线播放| 日日夜夜久久国产精品-国产男女无遮挡猛烈免费观看-在线观看热久精品视频-国产香蕉视频在线内射| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 久久中文字幕亚洲天堂-午夜国产成人福利视频-亚欧天堂成人av成人-熟女乱中文字幕熟女熟妇| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 成人精品一区二区三区久久-中文字幕乱码亚洲无线三区-亚洲精品亚洲人成人网-中文字幕五月久久婷热| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 精品淑女少妇av久久免费-欧美激情亚洲精品一区-九九热在线视频观看精品-亚洲天堂激情av在线| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 亚洲av优优优色首页-国产精品国产三级av-国产自拍精品午夜福利-亚洲av高清一区二区三区| 午夜激情小视频在线观看-日本福利视频免费观看-日本人妻久久精品欧美一区-国产成人自拍小视频在线| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 国产素人一区二区久久-欧美精品不卡在线观看-蜜桃精品一区二区在线播放蜜臀-欧美日韩精品在线一区二区三区| 国产在线精品一区二区中文-亚洲小说欧美另类激情-97碰久日韩视频在线观看-日本一道本高清不卡区| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 91精品国产精品国产-国产成人一区二区免av-亚洲av激情在线观看-一区二区三区亚洲精品在线观看| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码|