色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

There are mainly two types of 3D printing technologies currently applied in tool manufacturing. One is the Laser Powder Bed Fusion (LPBF) technology, used to manufacture metal tools with special grooves or complex internal cooling channels; the other is the Binder Jetting (BJ) technology.Metal 3D printing technology has gained a foothold in manufacturing complex external structures and internal cooling structures of tools. Renowned tool manufacturers around the world have applied metal additive manufacturing processes to the production of certain types of tools, thereby enhancing tool performance or achieving special tools that traditional manufacturing processes cannot achieve.
Subdivision of Carbide Cutting Tools
Subdivision of Carbide Cutting Tools

Binder Jetting 3D printing technology has enabled the creation of even more complex structures, including carbide?tools with internal cooling channels.Binder Jetting Metal 3D Printing Technology

What is Binder Jetting?

Binder Jetting 3D printing technology combines material jetting and sintering processes to produce fully dense metal components. The lower cost of equipment also means significantly reduced part costs, and low-cost, high-volume parts are crucial for transitioning to production. Binder Jetting metal 3D printing technology has the potential to replace low-volume, high-cost metal injection molding and can also be used to produce complex and lightweight metal parts in other fields, such as gears or turbine impellers, greatly reducing 3D printing costs and shortening delivery times.

Valve Cage Printed by Binder Jetting Metal 3D Printing
Valve Cage Printed by Binder Jetting Metal 3D Printing

In Binder Jetting 3D printing process, ceramic hard material powder particles, including tungsten carbide particles, are bound together layer by layer using a bonding material containing cobalt, nickel, or iron. This bonding material not only serves as the binder between powder layers but also imparts excellent mechanical properties to the product and enables the production of fully dense parts. It can even selectively adjust the bending strength, toughness, and hardness. These 3D printed carbide?molds have greater geometric freedom than molds produced by traditional methods, allowing for the creation of more complex geometries.

Flow Control Stack Printed by Binder Jetting Metal 3D Printing
Flow Control Stack Printed by Binder Jetting Metal 3D Printing

Advantages of 3D Printing Compared to Traditional Machining Processes

Traditional machining processes typically involve compressing tungsten carbide powder uniformly in a flexible bag to manufacture large-sized carbide?components or carbide components with high aspect ratios (such as end mills and drill bit shanks). Although the production cycle of the compaction method is longer than that of molding methods, the manufacturing cost of the tool is lower, making this method more suitable for small-batch production.

carbide?components can also be formed by extrusion or injection molding. Extrusion processes are more suitable for the large-scale production of axially symmetric shaped components, while injection molding processes are typically used for the large-scale production of complex-shaped components. In both molding methods, the grade of tungsten carbide powder is suspended in organic binders, giving the tungsten carbide mixture a paste-like uniformity. The mixture is then extruded through holes or molded into cavities. The characteristics of the tungsten carbide powder grade determine the optimal ratio of powder to binder in the mixture and have a significant impact on the flow of the mixture through the extrusion or into the mold cavity.

After molding, compaction, extrusion, or injection molding of the components, it is necessary to remove the organic binder from the components before the final sintering stage. Sintering removes pores from the components, making them fully (or substantially) dense. During sintering, the metal bonds in the compacted shaped components become liquid, but the components can still maintain their shape due to the combined action of capillary forces and particle contacts.

After sintering, the geometric shape of the components remains unchanged, but the dimensions shrink. To obtain the desired component dimensions after sintering, shrinkage must be considered when designing the tool. When designing the tungsten carbide powder grades used to manufacture each tool, it must be ensured that the correct shrinkage rate is achieved when compressed under appropriate pressure.

Internal Cooling Boring Tool Holder Mechanism for Powder Bed Metal 3D Printing
Internal Cooling Boring Tool Holder Mechanism for Powder Bed Metal 3D Printing

Furthermore, combining differentiated metal powders with binder jetting and laser powder bed 3D printing technologies, along with manufacturing expertise in post-printing processes, can expedite the production of finished components and molds, thereby reducing downtime and enhancing performance.

Carbide Tools Printed by Binder Jetting Metal 3D Printing
Carbide Tools Printed by Binder Jetting Metal 3D Printing

Meetyou carbide??is also committed to flexible customized design and manufacturing of special metal and alloy components such as high-temperature alloys and refractory metals. Meanwhile, it is upgrading to become an outstanding 3D printing solution provider for high-density, large-sized, and scalable production of tungsten components.

???????????? ??

???? ???? ??? ???????? ???? ???? ?????. ?????? ?????? ??????? ??? *

华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 偷拍一区二区三区视频播放器-亚洲欧洲日产韩国综合-国产精品久久精品亚洲-国产乱淫av麻豆国产| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 人人澡人人妻人人干-亚洲中国麻豆美女av-日本淫妇一区二区三区-美女午夜福利偷偷要网站| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 日韩三级在线视频不卡-国内自拍色第一页第二页-96热久久这里只有精品-日韩精品有码一区二区三区久久久| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 少妇一级aa一区二区三区片-欧美欧美欧美欧美一级片-91在线观看视频下载-自拍视频在线观看一区二区| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 国产四虎视频在线观看-日本一区二区三区暖暖视频免费-91人妻人人澡人人添人人爽-在线日本高清日本免费| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 日韩毛片精品毛片一区到三区-四虎国产精品久久免费观看-国产网站在线观看91-亚洲熟妇av不卡一区二区三区| 午夜精品久久内射电影-亚洲精品自拍视频免费在线-国产免费观看久久黄av麻豆-麻豆国产精品伦理视频| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 婷婷精品国产亚洲av不片-色播放视频在线观看视频在线播放-色综合91久久精品中文字幕-午夜视频网一区二区三区| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 国产好大好硬好爽好湿免费视频-国产精品一区二区精品一区二区-白白色发布在线播放国产-99久久国产精品成人观看| 91九色中文在线播放-日韩中文字幕熟女人妻-成人黄色一级在线观看-日本一区二区三区视频在线| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 无套进入极品美女少妇-新久久久高清黄色国产-国产肥臀在线精品一区二区-深夜午夜福利在线观看| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 人人玩精品人妻丰满少妇-亚洲综合一区二区三区四区五区-亚洲av日韩av偷拍-亚洲欧美日韩一本一二| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 在线播放口爆吞精美女-亚洲精品中文字幕日韩在线-亚洲福利视频免费在线观看-精品国产自拍免费视频| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频|