色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

To know Young’s modulus well and answer this question on title bar, we need to think about how materials?get elasticity.

For metal materials, we know that their interior is composed of atoms, many atoms are arranged regularly to form crystals, and many grains are combined together to form the metal we usually see.

Does elasticity come from the interaction between grains? Obviously not, because both single crystal and amorphous have elasticity.

Thus, elasticity probably comes from the interaction between atoms.

In order to be as simple and convenient as possible, we try not to introduce complex concepts or mathematical formulas.?Let’s start with the?simplest diatomic model.

Diatomic model of Young’s modulus

Diatomic model: the interaction between two atoms can be described by potential function (red line). The horizontal axis is the distance“r” between two atoms, and the vertical axis is the potential energy U (r); The interaction force (green line) can be obtained by deriving the potential function. It is worth noting that there is an equilibrium position r0r_ {0} between the two atoms, where the interaction force F = 0 and the potential energy is the lowest; In other words, when you leave this position.No matter to the left or to the right, there will be a force trying to pull it back.

Like a spring, there is such a balance position in the natural state. No matter whether you are squeezing the spring or stretching it, which still rebounds to the original position after releasing your hand.

This is the source of elasticity from the atomic level!

Of course, actual metals or other materials have many atoms inside. These atomic interactions can be simply understood as the superposition of a pair of atomic interactions.

Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 2
Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 3

analysis of the relationship between Young’s modulus and other parameters

In general, we can simply assume that this potential function has the following form:

Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 4
Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 5
Lennard-Jones?static energy

The above function has four variable parameters,which are the equilibrium position R0R_{0}, Biding energy U0U_{0},and parameters N and M. The above parameters may vary for different kinds of Atoms.

Now we take these two atoms as an independent system and stretch or compress them.

In order to change the distance between two atoms near the equilibrium position, the force F to be applied

Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 6

In order to correspond to Young’s modulus, we need to change it into σ= E ε Form, divide by one r02r on both sides_ {0} ^ {2} and substituting the above formula and pretend to operate:

Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 7
Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 8

Conclusion

That is?to say, Young’s modulus E is mainly affected by N, m, u0u_ {0}、r0r_ {0}. The atomic species and temperature can affect these parameters. The influence of different atomic species is obvious, and all parameters will change. The effect of temperature seems less obvious.

To observe the effect of temperature, we have to go back to the potential function curve itself. Because the potential function is not a perfect symmetric curve, when the temperature rises, it means that the atom moves more vigorously and the range of motion becomes larger, such as thermal expansion and cold contraction. At this time, the balance position r0r_ {0} will be offset, as shown by the green line in the following figure.

Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 9
Why is young's modulus almost not affected by the 3 factors: material composition, microstructure, and processing state? 10
Offset of dynamic balance position

It can be proved that atoms are always in motion. When the temperature is high, the equilibrium position r0r_ The larger {0}, the volume of the material increases and the young’s modulus decreases.

Back to our initial question, the number of iron atoms in different grades of steel can account for more than 90%. Even compared with pure iron, the interaction force between atoms does not change greatly, so its young’s modulus is hardly affected by the change of alloy composition; Similarly, no matter the microstructure changes or work hardening, the rearrangement of atoms does not change the force between atoms, so they do not affect young’s modulus.

In addition to Young’s modulus, physical quantities such as melting point, coefficient of thermal expansion and tensile strength of perfect crystal can also be derived from this model.

As for the abnormal phenomenon that the young’s modulus of rubber in high elastic state increases with the increase of temperature, it is because the source of rubber elasticity is different from that of conventional materials.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

久久国产精品一品二品-国产二区中文字幕在线观看-极品性感尤物少妇粉嫩逼-亚洲成人av男人的天堂网| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 日韩一区二区精品在线观看-日韩熟妇中文色在线视频-亚洲午夜精品免费福利-国产精品一区第二页尤自在拍| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 亚洲不卡av影院在线-久久精品伊人久久精品-亚洲国产日韩欧美三级-久久亚洲中文字幕精品二区| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 午夜精品人妻一区二区三区-亚洲精品成人久久av-成人亚洲av精品入口-高清传媒视频在线观看| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 日韩欧美熟妇在线观看-在线视频一区二区三区在线观看-欧美黄色在线观看网站-国产精品综合亚洲91| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 尤物视频在线观看精品-日韩午夜男女爽爽影院-日本少妇下面好紧水多影片-国产亚洲精品视频在线网| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 久久女人天堂精品av-韩国中文字幕三级精品久久-国产成人精品日本亚洲i8-免费黄色一级大片91| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 日本一区二区三区黄色网-亚洲国产综合久久天堂-精品国产乱码久久蜜桃-欧美少妇精品在线观看| 国产在线精品免费一区二区三区-国产精品毛片内在线看-久久精品国产亚洲av不卡性色-日韩中文不卡在线视频| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区| 蜜臀av午夜精品福利-日韩精品av在线一区二区-丰满熟女人妻一区二区三区-懂色日韩欧美国产亚洲| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 日本厕所偷拍美女尿尿视频-婷婷国产一区综合久久精品-欧美一日韩成人在线视频-四虎精品视频免费在线观看| 青青草免费视频手机版-男人天堂欧美日韩在线-成人黄色av在线免费看-超短裙女教师在线观看| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 日韩bd高清电影一区二区-久久亚洲国产精品久久-亚洲精品国产精品av-大胸少妇av网站在线播放| 办公室女厕偷拍美女撒尿-日本成人看片一区二区在线-丰满熟女少妇午夜福利-少妇被爽到高潮在线观看| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 精品人伦一区二区三区蜜桃-中文字幕久久人妻熟人妻-中文字幕av乱码在线看-久久精品国产亚洲妇女av| 男女激情四射午夜福利视频网站-人成午夜免费毛片直接观看-日本女优在线观看一区二区-青草国内精品视频在线观看| 久久精品国产亚洲av五区-日韩麻豆视频在线观看-亚洲欧洲国产成人综合在线-美利坚合众国亚洲视频|