色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The size of WC grains is of great significance to the friction and wear properties of cemented carbide. It is generally believed that coarse-grained cemented carbide has poorer wear resistance than fine-grained cemented carbide. After the grain refinement of cemented carbide, the size of the hard phase decreases, increasing the surface area of the hard phase grains and the bonding force between the grains, and the binder phase is more evenly distributed around them, which can improve the hardness and wear resistance of the cemented carbide. In this paper, the author conducts friction and wear experiments on cemented carbide to analyze the friction and wear properties under different parameters and the material removal mechanism, providing experimental evidence for the optimization design of high-speed cutting tool materials, reasonable material selection, and the study of high-speed cutting wear mechanisms.

Experiment

Test Materials

Three types of WC-6Co cemented carbide with different grain sizes were selected for the test. The size of the cemented carbide disc was φ55mm×4mm, and the surface was rough ground, finely ground, and polished. The mating material used was Al?O? balls with a diameter of 9.5mm. Both samples were ultrasonically cleaned in acetone for 20 minutes and dried for use. The material properties are shown in Table 1.

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 2

Friction and Wear Test

The test was conducted on a UMT-2 multi-functional friction and wear testing machine produced by CETR Corporation in the United States, using a ball-on-disc contact method. The structure of the testing machine is shown in Figure 1. The cemented carbide friction disc was attached to the working table with double-sided tape, and the Al?O? ball was placed in the fixture. The two types of mating materials produced mutual movement and force of action. The friction force generated was detected by the sensor, and the curves of friction force, normal force, and friction coefficient were automatically generated by the related software according to Coulomb’s law.

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 3

The test was conducted at room temperature, with normal forces of 10N and 20N respectively, and the linear velocities of the friction pair sliding were 40m/min, 80m/min, 120m/min, and 160m/min. The sliding distance was 500m. After the test, a scanning electron microscope (SEM) was used to observe the wear scar surface morphology of the upper and lower samples, and an X-ray energy dispersive spectrometer (EDS) was used to detect the elemental composition of the worn surfaces. All samples were analyzed for the elemental composition of the friction and wear surfaces under the same conditions.

Results and Analysis

Friction and Wear Performance

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 4

Figure 2 shows the friction coefficient curve of ZH cemented carbide drawn by the testing machine’s accompanying software (load 20N, sliding speed 160m/min). The experiment found that each friction process follows a similar pattern, that is, the initial dynamic friction coefficient undergoes a rapid increase from the initial value during the transition period, and then remains relatively stable, showing a fluctuating characteristic in the stable phase. In the beginning, under the action of the normal load, only local micro-convex bodies on the friction surface are in contact, the adhesive area is small, and the molecular attraction on the contact surface is weak, so the friction coefficient is small; as the friction process progresses, the micro-convex bodies interfere with each other, gradually get worn down, the adhesive area increases, and the molecular attraction also increases, leading to a gradual increase in the friction coefficient. The entire friction process is a continuous process of the contact surface adhering and then being sheared under the action of shear stress. Due to the peeling and breaking of the Co phase on the surface, the wear of the sample surface occurs, and the local adhesion on the surface quickly reaches a dynamic equilibrium, resulting in the friction coefficient of the surface being maintained within a relatively stable range, which is called the stable period.

Most scholars use the average value of the friction coefficient over a period of time (distance) as a characterization parameter of friction behavior. Therefore, this experiment selects the average value during the stable friction phase as the friction coefficient of the cemented carbide under the corresponding parameters. Figure 3 shows the friction coefficients of three types of cemented carbide under different loads and speeds.

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 5

It can be seen that with the increase of friction speed and load, the friction coefficient of the cemented carbide generally shows a decreasing trend, and the decrease is most obvious in the transition from relatively low speed (40m/min and 80m/min) to high speed (120m/min and 160m/min). From the perspective of material, the friction coefficient of ZH cemented carbide is smaller than that of the other two materials, and the friction coefficients of ZHX and HG cemented carbides are not significantly different, with the friction coefficient of HG cemented carbide being slightly larger.

Wear Mechanism

After the friction and wear tests, the microstructure of the worn surfaces of each sample was observed using a scanning electron microscope (SEM), and SEM images were taken, along with an analysis of the surface composition. The friction and wear mechanisms of the cemented carbide under different friction parameters are similar, as shown in Figure 4 (sliding speed 160m/min, load 20N).

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 6

In the initial stage of cemented carbide wear, the binder phase Co undergoes plastic deformation, and the surface layer of Co is extruded by the WC grains. Due to the low hardness and good ductility of Co, under certain conditions, a micron-scale friction film can form on the surface, while the harder WC particles gradually protrude from the friction surface, preventing further rapid wear of the surface and allowing the friction process to enter a relatively stable stage. As the binder phase Co continues to be lost, the WC framework of the material is damaged, and the dislocation density within the WC particles significantly increases. When the dislocation density accumulates to a certain extent, microcracks will form on the WC particles, causing the WC particles to begin to pull out from the cemented carbide matrix. The detached WC particles remain in the wear area, transforming into abrasive particles, which, under the action of the load, compress against the matrix, resulting in new plastic deformation and grain damage.

cemented carbide

As can be seen from Figure 4, as the grain size of the cemented carbide decreases, the grain density increases, and the degree of surface wear decreases. The surface of the ZHX cemented carbide shows no obvious shedding of WC particles, while the surface density of HG is very good, with almost no obvious shedding of WC particles. Therefore, for the traditional grain size cemented carbide ZH, the main wear mechanism is abrasive wear caused by the extrusion of the binder phase Co and the shedding of WC grains. As the grain size decreases and the density of the fine-grained cemented carbide increases, the phenomenon of WC grain spalling decreases, Co still wraps around the WC, the microstructure of the material remains intact, and most grains only undergo a certain degree of plastic deformation.

Conclusion

The size of WC grains has an important effect on the friction and wear properties of cemented carbide. As the grain size decreases, the friction coefficient slightly increases, and the wear resistance is enhanced.

The friction coefficient of cemented carbide is influenced by speed and load, and it shows a decreasing trend with the increase of speed and load.

The wear mechanism of traditional grain size cemented carbide is mainly characterized by the extrusion of the binder phase Co and the fracture and spalling of the hard phase WC grains; the grain spalling phenomenon of fine-grained cemented carbide is not obvious, and the main wear mechanism is plastic deformation.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 97人妻一区二区精品视频-99久热精品视频在线观看-韩国av福利在线观看-亚洲熟妇自偷自拍另类| 无套进入极品美女少妇-新久久久高清黄色国产-国产肥臀在线精品一区二区-深夜午夜福利在线观看| 精品淑女少妇av久久免费-欧美激情亚洲精品一区-九九热在线视频观看精品-亚洲天堂激情av在线| 在线播放口爆吞精美女-亚洲精品中文字幕日韩在线-亚洲福利视频免费在线观看-精品国产自拍免费视频| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 亚洲一区二区日韩精品在线观看-白浆高潮国产免费一区二区三区-热久久这里只有精品99-亚洲精品在线观看中文字幕| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 精品淑女少妇av久久免费-欧美激情亚洲精品一区-九九热在线视频观看精品-亚洲天堂激情av在线| 国产欧美日韩激情免费-日韩av不卡免费观看-一本色道久久88综合亚洲精品-av天堂有色在线观看| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 亚洲综合中文在线视频-在线视频福利精品91-久一在线免费播放视频-精品手机亚洲一区二区三区| 婷婷精品国产亚洲av不片-色播放视频在线观看视频在线播放-色综合91久久精品中文字幕-午夜视频网一区二区三区| 不卡一区二区三区视频-国产亚洲91精品色在线观看-国产精品青草久久福利不卡-国产黄色免费精品网站| 成人在线永久免费视频-日本理论电影一区二区三区-中文字幕成人av电影-91麻豆精品国产91久久麻豆| 美女脱掉内裤露屁屁最新章节-成人中文字幕在线观看的-国产极品尤物粉嫩在线观看-在线视频一区二区中文字幕| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 亚洲一区二区三区久久av-国语精品视频自产自拍-99久久精品美女高潮喷水十八-55夜色66夜色亚洲精品视频| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 欧美日韩精品视频免费下载-中文字幕一区二区三区伦理-一级特黄大片亚洲高清-午夜欧美日韩精品久久久久| 久久综合九色综合久久-在线看日韩欧美中文字幕-国产成人亚洲精品青草天美-91亚洲中文天堂在线观看| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 国产成人一区二区免费av-国产成人精品一区二区不卡-亚洲乱码精品一区二区在线-青草视频免费在线观看尤物| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 欧美成人国产精品137片内射-空之色水之色 在线观看-精品国产亚洲一区二区在线观看-色婷婷精品午夜在线播放| 国产精品一二三四区无线乱码-精品亚洲国产成人精品-国产精品蜜桃一区二区三区-黄片av在线免费播放| 欧美亚洲午夜综合一区二区-亚洲大香蕉视频在线观看-国产综合激情人妻91麻豆-国产精品国产三级国产专不| 亚洲黄色精品在线播放-国产精品对白在线播放-日韩熟女熟妇久久精品综合-人妻人妻少妇在线系列| 人日本中文字幕免费精品-日本口爆吞精在线视频-玖玖玖玖视频在线观看-国产精品内射在线播放|