色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Aluminum alloy is a general term for alloys with aluminum as the base. The main alloying elements include Cu, Si, Mg, and Sn, while secondary elements may include nickel, titanium, chromium, lithium, and others. Aluminum alloys have low density, good plasticity for shaping and processing into various forms. They exhibit excellent electrical conductivity, thermal conductivity, and corrosion resistance. Alloys formed by adding specific elements not only maintain the lightweight properties of pure aluminum but also possess higher strength.

aluminum alloy

Classification of aluminum alloy
Aluminum alloys can be classified into deformed aluminum alloys and cast aluminum alloys based on their processing methods.

Deformed Aluminum Alloys: Deformed aluminum alloys can be further categorized into non-heat-treatable and heat-treatable alloys, both of which exhibit moderate strength and hardness. The challenge in machining lies in their high plasticity, resulting in the formation of built-up edge during cutting, making it difficult to achieve a satisfactory performance. Mechanical properties can be improved through heat treatment, but strengthening is mainly achieved through cold working deformation. This category includes high-purity aluminum, industrial high-purity aluminum, industrial pure aluminum, and corrosion-resistant aluminum.

Cast Aluminum Alloys: Cast aluminum alloys have low ductility, with elongation typically below 4%, making them unsuitable for pressure processing and mostly suitable for cutting operations. Silicon-aluminum alloys demonstrate good casting properties and excellent mechanical performance, making them the most widely used cast aluminum alloys. The machinability of silicon-aluminum alloys is influenced by the silicon content, with higher content leading to more severe tool wear and poorer machining performance. Mechanical properties of cast aluminum alloys can be enhanced through heat treatment methods such as quenching and aging. This category includes hard aluminum, forged aluminum, superhard aluminum, and special aluminum alloys.

How to Machine the Aluminum Alloy? 2

Processing defects of aluminum alloy material

Insufficient Rigidity

Due to the strong toughness and resistance to bending of aluminum alloys, it also implies that aluminum alloys lack rigidity. In the machining of thin-walled aluminum alloy components, excessive machining pressure can lead to component deformation. During the cutting process, issues such as stretching, breaking, and surface squeezing may occur, causing displacement and resulting in irreversible situations for thin-walled aluminum alloy components.

Susceptible to Thermal Deformation

Compared to steel, the coefficient of expansion for aluminum alloys is typically 2.4 times that of steel. Therefore, significant heat energy is generated during the machining process, leading to thermal deformation issues in aluminum alloys.

Insufficient Hardness of Aluminum Alloy

During mechanical machining, scratching issues often arise, leading to a lack of glossiness on the surface of thin-walled aluminum alloy components, which does not meet machining standards. Besides daily operational issues, this problem is mainly attributed to the insufficient hardness of aluminum alloy materials.

Thin Surface

The most prominent feature of thin-walled aluminum alloy components is their extremely thin surface. If CNC machine operators use numerical control machine tools for operations, the inherent elasticity of thin plates, coupled with the interaction of forces during cutting, can cause vibration issues on the cutting surface. This, in turn, makes it challenging to effectively control the thickness and dimensions of the cutting surface, thereby increasing the surface roughness of thin-walled aluminum alloy components.

Comment usiner l’alliage d’aluminium ? 3

Processing methods?of aluminum alloy

Hot Working

Hot working refers to the plastic forming process completed above the recrystallization temperature when feeding aluminum alloy ingots. During hot working, the ingot’s plasticity is high, and the deformation resistance is low, allowing the production of larger products with smaller equipment capabilities.

Cold Working

Cold working refers to the plastic forming process completed below the temperature that induces recovery and recrystallization. The essence of cold working is a combination of cold working and intermediate annealing processes. Cold working can produce final products with smooth surfaces, precise dimensions, good structural properties, and the ability to meet various performance requirements.

Warm Working

Warm working is a plastic forming process that falls between cold and hot working. The primary purpose of warm working is to reduce the deformation resistance of the metal and enhance its plasticity.

 

Selection method of cutting aluminum alloy cutting tool

Due to the extremely sharp cutting edges and grooves of solid carbide tools, they exert low cutting forces in precision machining of aluminum alloys. They offer advantages such as large chip space and smooth chip evacuation. Consequently, solid carbide tools have gradually replaced traditional high-speed steel tools.

Aluminum alloy is easily machinable, allowing for higher cutting speeds suitable for high-speed machining. However, due to the low melting point of aluminum alloy, its plasticity increases with temperature. Under high-temperature and high-pressure conditions, significant frictional forces occur at the cutting interface, making it prone to tool adhesion. This is especially true for annealed aluminum alloys, which make it challenging to achieve a small surface roughness.

To obtain a smooth workpiece surface, a combination of rough and finish cutting is often employed. This is because various qualified workpiece blanks tend to have some oxide layers, causing considerable wear on the cutting tools. If the final cutting operation uses polished sharp tools for fine cutting, the above requirements can be met.

When selecting suitable tool materials for aluminum-silicon alloys, the silicon content guides the choice. For silicon content below 12%, tungsten steel tools in the ISO K10-K20 range can be used. If the silicon content exceeds 12%, diamond tools are preferred. Alumina ceramic tools are not suitable for aluminum alloy processing. During cutting, the oxidized aluminum chips can chemically bond with the ceramic tool, causing adhesion and chip lumps, leading to increased friction resistance and accelerated wear. Once chip lumps form, they replace the cutting edge during machining. In ultra-precision machining, the sharpness of the tool edge loses its significance. Additionally, the bottom of the chip lump is relatively stable, while the top is unstable and prone to breakage. After breaking, part of it is expelled with the chips, while the remaining part stays on the machined surface, making it rough. The protruding part of the chip lump beyond the tool edge also directly contributes to roughening the machined surface, and the friction between the chip lump and the already machined surface further increases surface roughness.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

少妇被躁潮到高潮无人码-日本欧美一级二级三级不卡-国产一区视频二区视频-亚洲无人区码一二三区别| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 蜜桃在线观看免费网站-亚洲成熟女性一级黄色蝶片-日韩一级黄色片天天看-一区二区三区在线视频观看美女| 开心五月这里只有精品-欧美日韩国产亚洲中文高-玩弄漂亮邻居少妇高潮-av资源中文在线天堂| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 国产熟女露脸91麻豆-自拍视频在线观看后入-麻豆映画视频在线观看-国产视频男女在线观看| 九色蝌蚪国产极品自拍-国产夫妻自拍后入视频-国产一级黄色片在线观看-亚洲欧洲日产国产av| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁| 精品国产乱码一二三区在线-精品国产一区二区在线视-国内男女精品一区二区三区-亚洲中文字幕国内精品| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 黄色av日韩在线观看-偷拍自拍在线免费视频-色偷偷偷亚洲综合网另类-国产成人免费综合视频| 爆操美女屁股在线观看免费-亚洲国产成人久久综合-亚洲一区二区免费中文麻豆-青青青青草原在线观看| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 久久国产精品亚洲va麻豆-嫩模大尺度偷拍在线视频-免费三级在线观看自拍-天堂av在线男女av| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 亚洲欧美日韩另类第一页-亚洲欧美日本综合久久-亚洲一本之道高清在线观看-不卡在线一区二区三区视频| 久久国产精品国产婷婷-四虎在线观看最新入口-天堂中文资源在线天堂-久久亚洲av日韩av天堂| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 综合一综合二综合久久-亚洲一区二区三区视频免费观看-亚洲国产中文字幕一区二区-日韩人妻一区二区三区蜜桃视频| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 国产激情在线观看视频-久久久精品国产视频在线-亚洲国产成人精品在线-亚洲乱码国产乱码精品视频| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 国产精品人成在线播放蜜臀-老司机午夜福利视频在线-亚洲激情av免费观看-国产情侣91在线观看| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 一区二区三区四区蜜桃av-国产av无套内射成人久久-亚洲第一大片一区二区三区三州-国产福利黄色片午夜在线观看| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 成年深夜在线观看视频-成人国产av精品在线-av乱亚洲一区二区三区-亚洲精品综合一区二区在线| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频|