色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Le concept de courbe limite de fatigue (HL) a été proposé pour la première fois lors de la résolution de la courbe limite de fatigue de l'essieu arrière.

On January 10, 1954, a comet of BOAC disintegrated 7800 meters above Elba, Italy.

On April 8, another “comet” of BOAC crashed into the bay of Naples, Italy, killing 21 people on board. So far, all comets have been grounded.

The frequent fall of comets shocked the world. ?

At that time, British Prime Minister Winston Churchill ordered us to find out the cause of the accident at all costs.

To this end, the British Navy sent out a fleet to salvage the wreckage of the plane near Elba Island from the bottom of the sea hundreds of meters deep, and sent it to the Royal Aircraft Research Institute for investigation.

The investigation found that there were cracks in the lungs of the air crash victims caused by gas expansion, indicating that the sudden decrease of air pressure in the cabin before the crash led to the rapid expansion of gas in the lungs, which led to the rupture of the lungs. Research on the wreckage of the plane showed that cracks appeared in some portholes, which was consistent with the autopsy findings.

At the same time, de havilan company carried out strict inspection on the aircraft under production and grounded. The test lasted more than 9000 hours, and cracks appeared on the aircraft skin, just like the cracks on the wreckage of the crashed aircraft.

According to the research and analysis of the technicians, the accident was caused by the “fatigue” of the metal materials used to make the aircraft body structure.

Under the action of alternating pressure, after a period of time, micro cracks are formed in the local high stress area, and then the micro cracks are gradually extended to fracture.

Fatigue failure has the characteristics of sudden in time, local in location and sensitivity to environment and defects, so it is not easy to be found in time.

Under the impact of repeated pressurization and decompression, the skin at the square porthole of comet aircraft deforms and cracks, which eventually leads to metal fatigue fracture. As the first kind of jetliner in the world, “comet” flies faster than other jetliners, and naturally bears more pressure, which makes it easier to cause metal fatigue.

Thus, through the investigation of the comet accident, a new subject – “fatigue mechanics” was born.

Today we will be familiar with and understand about: fatigue curve and basic fatigue mechanical properties.

Fatigue curve and symmetrical cycle fatigue curve

(1) Fatigue curve and fatigue limit

Fatigue curve: it is the relationship curve between fatigue stress and fatigue life, i.e. S-N curve, which is the basis for determining fatigue limit and establishing fatigue stress criterion.

For metal materials with strain aging, such as carbon steel and ductile iron, when the cyclic stress level drops to a certain critical value, the low stress section becomes a horizontal section, which indicates that the specimen can undergo infinite stress cycles without fatigue fracture. Therefore, the corresponding stress is called fatigue limit, which is denoted as σ – 1 (symmetric cycle, r = – 1).

If this kind of material does not fracture after 107 stress cycles, it can be considered that it will not fracture even if it is subjected to infinite stress cycles, so 107 cycles is often used as the base for determining the fatigue limit.

Another kind of metal materials, such as aluminum alloy and stainless steel, has no horizontal part in S-N curve, but increases with the decrease of stress. At this time, the stress without fracture in a certain cycle can only be defined as the conditional fatigue limit, or finite life fatigue limit, according to the service requirements of materials.

(2) Determination of fatigue curve

Generally, the fatigue curve is measured by rotating bending fatigue test. The principle of four point bending test machine is shown in the figure below.

The high stress (finite life) part of S-N curve was measured by group test method, that is, the higher stress level of 3-4 was taken, and the data of about 5 samples were measured under each stress level, and then the data was processed to calculate the median (survival rate 50%) fatigue life.

The median S-N curve with a survival rate of 50% can be obtained by using the σ – 1 measured by the ascending and descending method as the lowest stress level point of the S-N curve and fitting it with the results measured by the group test method into a straight line or curve.

(3) Fatigue limit under different stress states

The fatigue limit of the same material is different under different stress states, but there is a certain relationship between them.

The results show that there is a certain relationship between symmetrical bending fatigue limit and symmetrical tension compression and torsion fatigue limit.

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 2

(4) Relationship between fatigue limit and static strength

The test shows that the greater the tensile strength of metal material, the greater the fatigue limit.

For medium and low strength steels, there is a linear relationship between fatigue limit and tensile strength.

When σ B is low, it can be approximately written as σ – 1 = σ B.

When σ B is higher, the near linear relationship will deviate, which is due to the decrease of plasticity and fracture toughness and the easy formation and propagation of cracks.

Fatigue diagram and asymmetrical cyclic fatigue limit

Many parts work under asymmetric cyclic load, so it is necessary to measure the asymmetric cyclic fatigue limit of materials to meet the needs of design and material selection of such parts.

The fatigue limits of various asymmetrical cycles are usually obtained from the fatigue diagram by engineering drawing method.

According to different drawing methods, there are two kinds of fatigue diagrams

(1) σ a – σ m fatigue diagram

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 3

Under the condition of different stress ratio R, the fatigue limit σ r expressed by σ Max is decomposed into σ A and σ m, and the fatigue diagram of σ a – σ m is obtained by making ABC curve in the coordinate system.

(2) σ max (σ min) – σ m fatigue diagram

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 4

The fatigue limit under different stress ratio R is expressed by σ max (σ min) and σ m respectively in the coordinate system to form the fatigue diagram.

AHB is the fatigue limit σ Max under different R.  

The fatigue limit increases with the increase of average stress or stress ratio, but the stress amplitude a decreases.

Fatigue overload resistance

The original fatigue limit of the material may not change or decrease when the metal parts are subjected to short-term overload occasionally, which depends on the overload stress of the material and the corresponding cumulative overload cycles.  

If the metal runs for a certain number of cycles at a stress level higher than the fatigue limit, its fatigue limit and fatigue life will decrease, which will cause overload damage.

The ability of metal material to resist fatigue overload damage is expressed by overload damage boundary or overload damage area.

The overload damage boundary is determined by experiments: different overload stress levels and corresponding stress cycles that begin to reduce fatigue life are measured, and different test points are obtained. The overload damage boundary is obtained by connecting each point. The two queries are not favorable

The shadow line area between the overload damage boundary and the straight line section of the high stress area of the fatigue curve (the stress cycle of fatigue fracture under each stress level of this section is called the overload endurance value) is called the overload damage area.

When the parts are overloaded in this area, the fatigue limit of the material will be reduced in varying degrees, and the more the fatigue limit is reduced near the endurance value.

The steeper the overload damage boundary (or overload endurance value) is and the narrower the damage area is, the stronger the ability of resisting fatigue overload is.

Fatigue notch sensitivity

Due to the need of use, parts often have steps, corners, keyways, oil holes, threads and so on. These structures are similar to notch effect, which will change the stress state and cause stress concentration.

So it is important to understand the effect of stress concentration caused by notch on fatigue limit.

There are two extreme cases when evaluating materials according to fatigue notch sensitivity

(a) KF = KT, that is to say, the stress distribution of notched specimen is exactly the same as that of elastic state, and there is no stress redistribution. At this time, the notch reduces the fatigue limit most seriously, and the fatigue notch sensitivity QF = 1, and the notch sensitivity of material is the largest.

(b) KF = 1, σ – 1 = σ – 1n, the notch does not reduce the fatigue limit, which indicates that the stress has a great redistribution in the fatigue process, the stress concentration effect is completely eliminated, QF = 0, the notch sensitivity of the material is the smallest.

Therefore, QF value can reflect the ability of material to redistribute stress and reduce stress concentration during fatigue.

High cycle fatigue: most metals are very sensitive to notches; ears are broken

In low cycle fatigue, most metals are not sensitive to notch, because the notch root area of the latter is in the plastic zone, resulting in stress relaxation and stress concentration reduction.

中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 日本高清成人一区二区三区-亚洲国产精品久久成人-91福利国产午夜亚洲精品-极品激情国产剧情av| 亚洲一区二区三区视频观看-日韩精品一二三四区视频-亚洲码与欧洲码区别入口-日韩精品大片一区二区三区| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 熟妇女人妻丰满少妇中文-最新国产成人在线网站-亚洲性日韩精品一区二区三区-亚洲免费熟女做爰视频| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 九九在线国产精品自拍-亚洲综合精品中文字幕-亚州国产成人综合精品-人妻少妇久久精品中文| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 亚洲区一区二区三区四区-精品亚洲国产成人av-国产美腿丝袜诱惑在线观看-美女抠逼视频免费网站| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 亚洲一区二区欧美日韩-亚洲精品四虎在线观看-国产夫妻在线视频播放-激情人妻中文字幕中字福利在线| 国产精品自在线拍国产-久久精品韩国日韩精品-久久夜色国产精品亚洲av蜜桃-日韩精品一区二区三区四区免费| 91麻豆免费视频播放-欧美一级黄片免费在线播放-av免费网站不卡观看-日韩女同中文字幕在线| 国产在线一区二区三区不卡-久久精品女人毛片水多国产-无人区一码二码三码四码区免费-日韩亚洲国产成人在线| 加勒比日本东京热风间由美-少妇高潮喷水高清av-国产免费观看久久黄av-永久成人免费在线视频| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 国产亚洲精品视频自拍-激情五月开心五月婷婷-日本少妇三级交换做爰做-国产日韩三级中文字幕| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 尤物视频在线免费观看-粗大挺进孕妇人妻在线-国产精品自偷自拍对白-久久性生活免费看视频| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 91高清精品一区在线观看-成人黄色大片免费网站-国产成人综合亚洲另类-气质女人呻吟内射在线观看| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 国产91精品一区二区亚洲-国产精品国产三级国产播-久久国产精品免费一区六九堂-五月婷婷六月丁香激情网| 91精品国产福利在线观看-av在线免费观看播放-日本岛国免费在线观看-国产高清视频一区二区三区四区|