色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Milling a thin-walled ring with a composite structure of bilateral axial supporting parts, shown in Figure 1. The material of the part is 30CrMnSiA steel, which complies with the GJB1951-94 standard, and the hardness is 30~35HRC. The surface roughness of the part is Ra=3.2μm, the symmetry of the two supporting parts is 0.05mm, and the perpendicularity of the bottom surface is 0.05mm, indicating high machining requirements. The wall thickness of the ring body is 2mm, which is too thin, leading to insufficient stiffness.

The main body of the part is a weak stiffness structure, which is prone to instability during mechanical machining, especially when machining the outer wall of the ring and clamping the thin-walled ring.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 2

Machining Analysis

The morphology of the typical weak thin-walled ring with a composite structure of bilateral axial supporting parts after machining with general mechanical machining techniques is shown in Figure 2. The following deficiencies are observed:

(1)Obvious tool marks in the middle of the bilateral axial supporting parts. The upper and lower parts of the bilateral axial supporting parts are formed during two separate machining steps: milling the shape of the thin-walled ring and milling the shape of the bilateral axial supporting parts. Due to the non-coincidence of the process benchmarks between the two steps, obvious tool marks appear in the middle of the bilateral axial supporting parts.

(2)Prominent vibration marks in the middle of the thin-walled ring shape. The wall thickness of the middle part of the ring body is 2mm, which results in significantly insufficient stiffness. During the machining of the thin-walled ring shape, the middle part is prone to instability, leading to the formation of obvious vibration marks. The superposition of these issues collectively results in the machining instability problem becoming a production bottleneck.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 3

Process Optimization

To address the deficiencies of general mechanical machining techniques, a series of compound machining measures have been adopted, including the conversion control of process benchmarks to “bore-face-contour,” the gradual reduction of workpiece stiffness during machining, the reinforcement of stiffness combined with damping and vibration absorption, and the maximization of clamping area and stiffness. These measures aim to achieve stable machining of the weak thin-walled ring with the composite structure of bilateral axial supporting parts.

Precision Conversion of Process Benchmarks

(1) After rough machining the inner shape and end face, precision turn the inner circle and end face to form the process benchmark “bore-face.”

(2) The specific steps for milling the contour positioning benchmark are as follows.

1)Clamp the fixture in the vise (see Figure 3). The bottom surface of the fixture is aligned with the workpiece end face, and the cylindrical surface of the fixture is aligned with the axial direction of the workpiece inner circle. Use a dial indicator to align the fixture bottom surface with a flatness of ≤0.01mm and then secure it.

2) Clamp the workpiece on the fixture (see Figure 4). The workpiece end face and inner bore are tightly against the fixture’s positioning surface and are clamped with a pressure plate.

 

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 4The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 5

 

3)Symmetrically machine two identical precision milling positioning steps on the workpiece contour (see Figure 5). The step height is 20mm, which converts the process benchmark from “bore-face” to “contour.”

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 6

Steady-state Machining Control

(1) The specific steps for milling the thin-walled ring contour are as follows.

1)Clamp the workpiece with a vice on the precision milling positioning step (see Figure 6).

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 7

2) Embed polytetrafluoroethylene or nylon washers into the internal thread relief groove of the workpiece, and then use an external thread mandrel to screw into the internal thread of the workpiece to enhance the stiffness of the annular body cavity.

3) Machine the round corners of the bilateral supporting parts and the shape of the thin-walled ring (see Figure 7).

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 8

(2) The specific steps for milling the shape of the bilateral axial supporting parts are as follows.

Turn the workpiece around, and use an external thread mandrel (see Figure 8) to screw into the internal thread of the workpiece to enhance the stiffness of the annular body cavity.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 9

Clamp the workpiece with a clamping block (see Figure 9), and secure it with a flat-nose pliers.

Perform finish machining on the shape of the bilateral axial supporting parts (see Figure 10).

 

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 10

(3) The specific steps for milling the outer step of the bilateral supporting parts?are as follows.

Clamp the fixture with a flat-nose pliers (see Figure 11).

Axially compress the thin-walled ring body of the workpiece with the fixture (see Figure 12).

Press the expanding ring into the inner circle of the workpiece’s thin-walled ring and align the inner circle of the expanding ring with the edge finder.

Machine the structures such as the outer side of the bilateral supporting parts, the step, chamfer, and thread to completion.

The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 11The Milling Method for Thin-Walled Ring and Composite Structures with Weak Stiffness 12

Machining Process

According to the optimized process plan, the specific machining process is as follows.

(1) Milling the profile positioning reference: The milling process for the profile positioning reference is shown in Figure 13.

(2) Milling the shape of the thin-walled ring: The shape of the thin-walled ring after milling is shown in Figure 14.milling

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

性感红唇美女扒内裤视频网站-国产精品日本一区二区三区在线-久久99午夜福利视频-国产高清露脸自拍视频在线播放| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 久久网站黄色一级视频-精品极品三级久久久久电-国产精品天堂蜜av在线播放-国产传媒免费在线观看| 91精品天堂福利在线观看漫画-亚洲国产精品一区亚洲国产-亚洲国产成人最新精品资源-亚洲国产精品成人综合久| 精品淑女少妇av久久免费-欧美激情亚洲精品一区-九九热在线视频观看精品-亚洲天堂激情av在线| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 国产深夜视频在线观看-丰满人妻熟妇乱又乱精品-青草视频在线观看资源-奇米网东京热日本人妻| 久热免费观看视频在线-久久精品免费看国产成人-91极品女神嫩模在线播放-青草视频在线观看久久| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 国内精品国产三级国产-91制片厂麻豆果冻剧情观看-日韩中文字幕有码在线视频-精品人妻伦一区二区三区久久| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 国产精品福利一区二区三区-日韩精品国产精品高清-日韩亚洲精品中文字幕在线观看-国内偷拍免费视频91| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 四虎精品高清在线观看-日韩有码国产中文字幕-国产一区二区三区亚洲污在线观看-亚洲av永久久无久之码精| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 91九色中文在线播放-日韩中文字幕熟女人妻-成人黄色一级在线观看-日本一区二区三区视频在线| 91国自产区一二三区-日韩高清不卡一区二区三区四区-免费欢看欧美黄色国产-成人无遮挡毛片免费看| 对天堂网在线观看av-一本色道久久亚洲狠狠躁-少妇被粗大的猛进视频-日韩熟女一区二区精品视频| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 日本三十四十五十路熟妇-国产一区二区三区蜜桃视频-蜜桃传媒第一区免费观看-来点刺激的视频日韩经典三级| 在线视频自拍第九十七页-亚洲岛国精品视频在线观看-亚洲av日韩一区在线观看-日韩精品中文一区二区三区| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 国产特级黄色录像视频-成人亚洲精品专区高清-国产97在线免费观看-91精品青草福利久久午夜| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| 日韩av中文字幕剧情在线-亚洲综合一区二区三区在线-91麻豆精品国产大片免费-日韩欧美亚洲制服丝袜| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 久久777国产线看观看精品-日韩精品一区二区三区四区-美女射精视频在线观看-久草福利资源免费在线观看| 国内自拍视频在线观看h-亚洲美女性生活一级片-香蕉久久夜色精品国产成人-亚洲国产成人久久综合人| 日本黄网站三级三级三级-91网址免费在线观看-肥老熟女性强欲五十路-无套内谢少妇高朝毛片| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 91精品国产色综合久久不88-黑人性做爰片免费视频看-房事插几下硬不起来了咋治疗-熟女乱一区二区三区四区|