色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Hard turning (turning instead of grinding) refers to the process of using turning methods for the final machining or finishing of hardened steel. Typically, turning is only used for rough machining before quenching. Until the 1990s, the finishing after quenching could only be achieved through grinding processes, and turning could only process workpieces with hardness not exceeding HRC55. With the development of high-hardness cutting materials and related machine tools, such as the use of PCBN tools, ceramic tools, or new types of carbure tools for turning hardened steel on modern lathes or turning centers, the machining quality can reach the level of fine grinding. Most applications of hard turning replace grinding. Currently, the hardness limit of turning can reach HRC68. In developed countries, hard turning technology has been widely used to process various parts, serving as an economical machining process to replace grinding.

hard turning tool

Tool Materials

Coated carbide tools involve coating wear-resistant materials such as TiN, TiCN, TiAlN, and Al2O3 onto carbide tools, with coating thickness ranging from 2 to 18mm. The function of coatings includes reducing friction, minimizing the generation of cutting heat, and having a low thermal conductivity to weaken the heat effect on the tool. Compared to conventional carbide tools, coated carbide tools exhibit significant improvements in strength, hardness, and wear resistance. For example, when machining workpieces with hardness between HRC45 and 55, coated carbide tools can achieve high-speed turning. Typically, CBN is suitable for machining hardened steel with hardness greater than HRC55, PCBN tools are suitable for workpieces with hardness higher than HRC60, and ceramic tools are more suitable for workpieces with hardness lower than HRC50. The cost of ceramic tool materials is lower than CBN, and ceramic tool technology in China is relatively mature with reliable blade performance. The bending strength and impact toughness of new types of carbide and coated carbide tool materials are higher than CBN and ceramic materials, and their prices are lower, making them suitable for processing hardened steel workpieces with hardness between HRC40 and 50.

What is Hard Turning Technology: An Economical Machining Process as Substitute for Grinding 2

1Cutting Parameters and Conditions

The rational selection of cutting parameters significantly affects hard turning. As the hardness of the workpiece material increases, the cutting speed should decrease. The appropriate cutting speed for hard turning finishing is between 50 and 200m/min, with a commonly used range of 100 to 150m/min. When using large cutting depths or interrupted cutting, the cutting speed should be maintained between 50 and 100m/min, with cutting depths typically ranging from 0.1 to 0.3mm. When high surface roughness is required, smaller cutting depths can be chosen, with feed rates typically ranging from 0.025 to 0.25mm/r, depending on the surface roughness values and productivity requirements. Due to the excellent heat resistance and wear resistance of PCBN and ceramic tool materials, higher cutting speeds, larger cutting depths, and smaller feed rates can be selected. However, the impact of cutting parameters on the wear of carbide tools is greater than that of PCBN tools, so it is not advisable to use higher cutting speeds and depths when using carbide tools.

2Hard Turning Machine Tools

Compared to turning non-hardened steel, turning hardened steel increases cutting forces by more than 50% and requires about twice the power. Therefore, hard turning imposes higher requirements on machine tools, such as system rigidity and power. To achieve surface quality comparable to grinding, radial and axial vibrations of the spindle must be kept within 2mm, and the machine must have a digital linear measurement system and good temperature compensation performance (micron-level compensation), while avoiding creep. In addition to ensuring high strength, the spindle system of the machine tool should also have high rotational speed to fully utilize the performance advantages of PCBN or ceramic tools, thereby ensuring the machining accuracy and efficiency required for continuous production.

 

Economic Benefits of Hard Turning

In the automotive manufacturing industry, most parts undergo final precision or shape machining after heat treatment, and hard turning is increasingly being adopted as an economical alternative to grinding. Currently, more and more foreign enterprises recognize the advantages of hard turning, while domestic practices still predominantly favor grinding, mainly due to the cost of tooling, which makes many companies view it as an expensive process.

1High Machining Efficiency

The cost of tools used in hard turning is generally 10 to 20 times higher than traditional turning tools, but compared to grinding, hard turning achieves higher machining efficiency. Hard turning often utilizes large cutting depths and high workpiece speeds, with metal removal rates typically three to four times that of grinding; the energy consumed is also only about one-fifth of grinding. Additionally, tool changeovers in hard turning can be completed within two minutes, compared to the 30 minutes or longer needed for grinding wheel replacements, without the need for correcting grinding wheel cutting profiles, thus minimizing production time losses associated with grinding wheel changes and corrections and ensuring high machine utilization rates.

2Lower Equipment Investment, Low Maintenance Costs, Suitable for Flexible Production Requirements

With equivalent productivity, lathe investment is only about one-third to one-tenth that of grinding machines, with lower auxiliary system costs. Lathes themselves are flexible machining methods with a wide processing range. For multi-variety small-batch production, modern CNC lathes equipped with various tool changers or tool magazines make it easy to switch between different workpieces, with quick workpiece clamping. Moreover, compared to grinding, hard turning is more adaptable to flexible batch production requirements. When turning, multiple surface machining (such as outer circles, inner holes, grooves, and end faces) can be completed in one clamping, resulting in short auxiliary times and high relative positional accuracy between machining surfaces. In contrast, grinding requires multiple installations or processes.

3Hard Turning Provides Excellent Surface Finish Quality for Parts

Although grinding can achieve good surface smoothness at relatively high feed rates, hard turning with PCBN inserts can achieve the same or better surface smoothness at significantly higher metal removal rates. Most of the heat produced during hard turning is carried away by the chips, avoiding surface burns and cracks commonly associated with grinding, resulting in excellent surface finish quality, precise machining roundness, and guaranteed surface accuracy.

4Hard Turning is a Clean Machining Process

Hard turning effectively removes metal by “peeling” softened chips from the workpiece. In most cases, hard turning does not require coolant, and using coolant can adversely affect tool life and surface quality. Since hard turning involves annealing the shear portion of the material to soften it for cutting, excessive coolant rates can reduce this effect caused by cutting forces, leading to increased mechanical wear and shortened tool life. This helps eliminate the problems associated with coolant use, reducing the cost of waste liquid treatment. Meanwhile, hard turning eliminates the need for coolant-related devices, reducing production costs, simplifying production systems, and producing clean and clean chips that are easier to recycle than grinding.

 

Development of Hard Turning

In the automotive industry of developed countries such as Germany, various shaft and sleeve parts are mostly processed using hard turning technology with good results. Due to the requirement for the best combination of machine tools, tools, fixtures, and processes, as well as insufficient promotion of the effectiveness of hard turning, the application of hard turning technology in China is not yet widespread. Currently, only a few enterprises are machining hardened.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 日韩中文精品在线字幕-久久精品国产护士小美女-91黑丝女神在线播放-91人妻蝌蚪九色水蜜桃| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 国产美女口爆吞精服务-亚洲无人区码一码二码三码-久久精品99国产精品最新-日本少妇激情在线视频| 国产高清三级自拍视频-最近日本免费播放视频午夜-日本女优一级片中文字幕-在线播放深夜精品三级| 日本一区二区三区乱在线视频-国产精品一区二区精品视频-日本人妻系列在线免费看-国产成人高清三级视频| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 少妇特殊按摩高潮连连-国产成熟美女三级视频-亚洲男人天堂成人免费-国产粉嫩美女在线观看| 成人av亚洲男人色丁香-色丁香婷婷综合缴情综-国产男女视频免费观看-日韩有码中文字幕一区八戒| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 日本淫片一区二区三区-精品亚洲人伦一区二区三区-精品成人短视频在线观看-日韩亚州欧美国产另类| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 99精品国产在热久久婷婷人-黄色av一区二区在线-精品一区二区三区中文字幕在线-久久91国产人妻熟女| 国产高清丝袜av综合-精品亚洲一区二区在线-国产丝袜大长腿精品丝袜美女-日本熟女午夜福利视频| 国产视频深夜在线观看-在线播放亚洲欧洲亚洲-不卡日韩av在线播放-国产午夜视频在线观看| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 四虎成人免费永久视频-婷婷激情五月天久久综合-亚洲欧美自拍偷拍丝袜-日韩精品午夜视频一区二区三区| 久久女婷五月综合色啪色老板-国内不卡的一区二区三区中文字幕-在线观看一区二区三区日韩-五月天丁香婷婷狠狠狠| 十八禁黄网站免费观看在线-欧美日韩精品久久久免-黄色av免费在线观看网站-国产在线高清一区二区三区av| 日本一区二区三区三级视频-亚洲国产精品一区二区久-蜜桃视频网站免费观看-在线视频中文字幕一区二区| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 97视频资源在线观看-国产av天堂久久精品-亚洲av一二三四区又爽又色又爽-悠悠色网视频在线精品| 亚洲av高清网站夜夜去-拍国产乱人伦偷精品视频-成人日韩欧美在线观看-无遮挡国产精品一级二级三级视频| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 国产欧美日韩激情免费-日韩av不卡免费观看-一本色道久久88综合亚洲精品-av天堂有色在线观看| 人妻中文字幕在线观看-日本精品一级影片欧美精品-91偷自国产一区二区三区-女人高潮被爽到呻吟在线| 黄色永久免费中文字幕-蜜臀av一区二区三区人妻在线-国产精品久久午夜伦鲁鲁-国产欧美日韩亚洲更新| 国产av蜜臀一区二区三区野战-欧美精品久久精品推荐-亚洲有吗黄色日韩视频-中文字幕在线乱码人妻| 草草草草伦理少妇高清-国内精品视频网站草草-国产精品精国产在线观看-国产麻豆激情av在线| 青青青视频蜜桃一区二区-粗大挺进人妻中文字幕-国产小视频在线看不卡-国产精品一区免费在线观看| 蜜臀精品国产亚洲av尤物-日韩人妻少妇中文字幕-赶碰97在线公开视频-亚洲欧美日韩天堂综合| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 91精品国产在热久久-亚洲欧美乱综合小说区-丰满少妇被粗大猛进人高清-99精品国产一区二区青青性色| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看|