色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

On this week we’ll discuss the effect of helical angle on the cutting performance of a milling cutter in meetyou weekly.
for illumination helical angle end milling cutter
fig.1

As we all know, there are two basic types of cutting edge shapes for end milling cutter: straight shape and helicalshape, among which the helicaltype is more widely applied because it can lead to faster, stabler, and more effective cutting than straight type. You can see the general 2 types of helicaledge in fig.1. Left helicaltype is mainly used for high precision milling, such as processing mobile phone keys , film switch panel, LCD panel, and acrylic lenses. The right helicalmilling cutter conforms to the spindle rotation of miller, and it is convenient to unload at most chucks. Thus, the right helicalend milling cutter is the most widely used and the common right helicalangle is usually 30° ~ 45°.

In our general opinion, The helical angle?U of end milling cutter?corresponds to the inclination?angle?λs, but the introduction and discussion of the dip angle?is mainly about turning processing.?However, there are many differences between milling and turning.?It is impossible to apply all?knowledge about?edge inclination?angle to the milling of end mills.

For milling, it is roughly known that a larger spiral angle increases the number of teeth working at same time, reducing impact and increases smoothness during milling, and making the end mill edges sharp. Except for that, ?what kind of impact will the size of helical angle have on end milling cutters? Tool and edge angles are interrelated and impact for each other. Let’s take a experiment to get some data for further to-know of this subject.

 

A experiment on groove milling with 2 edge helicalend milling cutter

The experiment was carried out on a vertical machining center. A 2-edge end mill with diameters of φ12mm and different helical angles was used to mill a 12mm× 12mm slot with width × height. The vertical error (ΔX) of both sides of the groove was measured based on the bottom surface of the groove after machining. The influence of spiral angle on the machining accuracy was evaluated by comparing the error values.

The work piece?to be processed?is carbon steel with hardness of 28HRC. The cutting parameters of each tool in the experiment are as follows: feed speed 50mm /min, cutting speed 29m /min, and cutting depth 12mm. Oil coolant is used. Experimental results are shown in the figure 2.

 

Influence of Helical Angle of End Milling Cutter on Cutting Performance 1
fig.2 experiment data

From the experimental results, we can see that:

( 1) Overcut always occurs on the up?milling side?of work piece.?On the contrary, the missing cut?phenomenon?always appears?on the down?milling side, and the maximum point of overcut and missing cut is at the end milling cutter extension farthest.?This point accords with the deformation pattern?of the tool and the tool extension length during up?milling and down?milling.

( 2) As the spiral angle of the end milling cutter is less than 30 °, the perpendicularity error value will increase with the increase of the helical angle, whether on the forward milling side or on the reverse milling side.

When the helical?angle?is greater than 40 °, it will decrease with the increase of the helical?angle. Therefore, it can be considered that when the end milling cutter has a smaller?helical?angle?or a larger?helical?angle, the shape accuracy of its groove milling is high, Although it seems a contradiction.

( 3) From the perspective of machining accuracy, when the helical?angle?is 0, the cutting edge is straight and the accuracy is the highest. However, from the basic characteristics of the helical?angle?of the end mill, the end mill will completely present intermittent cutting in this case. This kind of machining with large cutting impact requires high manufacturing accuracy of the tool itself.

 

A experiment of side milling with helical angle and 4-edge end milling cutter

The side of the workpiece is milled on a vertical machining center with a 4-edge end milling cutter with a helical angle?of 30 ° and 55 °. We compare the influence of the change of the two end milling cutters with the cutting width (radial feed) on the machining accuracy. When the diameter of the end milling cutter is 25mm, the 45 # steel with the hardness of 94HRB shall be cut by the straight milling method and dry cutting. The cutting parameters are feed rate of 100 mm/min, cutting speed of 26 mm/min and cutting depth of 38 mm The measured perpendicularity error, flatness error and surface roughness after machining are shown in Figure 3.

Influence of Helical Angle of End Milling Cutter on Cutting Performance 2
fig.3 experiment data

It can be seen that when the cutting width is not particularly large, the machining accuracy of the 55 ° large helical angle?end mill is higher than that of the 30 ° helical angle?end mill. This is consistent with the groove milling experiment results in Figure 2. After analyzing the reasons, it can be considered that this is because when the cutting width is small, the actual rake angle?of the large helical angle?end mill is large, which makes the edge sharp and reduces the tangential cutting resistance, energy consumption and tool deformation.

 

Induction of helical angle characteristics

(1) Spiral angle and cutting resistance: tangential cutting resistance decreases with the increase of helical angle, and axial cutting resistance increases with the increase of helical angle.

(2) Spiral angle and rake angle: the increase of helical angle makes the actual rake angle of end milling cutter increase and the edge become sharper.

(3) Spiral angle and machined surface precision: Generally, the perpendicularity and flatness tolerance value of the machined surface increases with the increase of the helical angle, but when the helical angle is greater than 40 °, it decreases with the increase of the helical angle.

(4) Spiral angle and tool life: the wear speed of the circumferential edge belt is basically proportional to the helicalangle.On the other hand, when the helical angle is very small, slight tool wear will also significantly reduce the cutting performance of the tool, cause vibration, and make the tool unable to continue to use. When the helical angle is too large, the rigidity of the tool will become poor, and the service life will be reduced.

(5) Spiral angle and material to be cut: when machining soft materials with low hardness, use large helicalangle to increase the front angle and improve the sharpness of the cutting edge.When machining hard materials with high hardness, small helical angle is used to reduce the front angle and improve the rigidity of the cutting edge

 

Conclusion about our research on end mills with helical angle

Helical angle is one of the main parameters of helical end milling cutter. The change of Spiral angle has a great impact on the cutting performance of the cutter. With the development of CNC machining technology and flexible manufacturing technology, it is possible to change the size of helical angle in the tool manufacturing process. If we study further the various effects of spiral angle size on the cutting performance of helical end milling cutter, when manufacturing and selecting helical edge end milling cutters, we need to consider the performance and processing accuracy of the processed material, processing efficiency, tool material and tool life, which will undoubtedly play an important role in promoting efficient and high-precision milling.

 

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

2023年久久国产精品-亚洲中文字幕二区在线观看-人人妻人人玩人人澡人九色-午夜精品福利视频网站| 2020天天操夜夜操-亚洲色图视频在线观看,-亚洲色图专区另类在线激情视频-岛国精品毛片在线观看| 少妇高潮真爽在线观看-韩国福利视频一区二区三区-警花av一区二区三区-尤物视频国产在线观看| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 精品精品国产午夜福利区免费观看-日韩精品一区二区三区2020-一区二区三区精彩视频在线观看-亚洲第一香蕉视频在线| 日本人妻中文字幕有码视频-男女啪啪视频免费观看一区-青青草原综合在线视频-极品人妻少妇精品一区二区| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 久久网站黄色一级视频-精品极品三级久久久久电-国产精品天堂蜜av在线播放-国产传媒免费在线观看| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 久久777国产线看观看精品-日韩精品一区二区三区四区-美女射精视频在线观看-久草福利资源免费在线观看| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 日本免费久久精品视频-毛很浓密很多黑毛熟女-97这里只有精品在线-亚洲乱码国产乱码精品精| 欧洲人妻中文字幕在线-白白色永久免费视频播放-精品日韩免费在线视频-风间由美性色一区二区三区| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 久久777国产线看观看精品-日韩精品一区二区三区四区-美女射精视频在线观看-久草福利资源免费在线观看| 国产一级亚洲一级一区-国产精品一亚洲av日韩av-日韩高清有码中文字幕-久久国产精品免费一区二区三区| 日本高清成人一区二区三区-亚洲国产精品久久成人-91福利国产午夜亚洲精品-极品激情国产剧情av| 精品视频人妻少妇一区二区三区-人妻中文字幕一二三区-日本老熟妇成熟老妇人-东京热国产精品二区三区| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 国产午夜视频在线观看720p-成人深夜福利av在线-一区二区日韩精品教师学生-亚洲一区二区三区美臀在线播放| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 日本一区二区三区视频高清-国产麻无矿码直接观看-国产精品久久久久久无-日韩精品不卡在线视频| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 蜜桃国产精品一区二区三区-午夜理论片在线观看有码-91亚洲视频在线免费观看-自拍偷拍区一区二区三区精品区| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 极品国产粉嫩18尤物在线播放-中文字幕av人妻在线-国产一区二区三区乱码在线-最新亚洲av日韩av| 九九在线国产精品自拍-亚洲综合精品中文字幕-亚州国产成人综合精品-人妻少妇久久精品中文| 日本一区二区三区视频高清-国产麻无矿码直接观看-国产精品久久久久久无-日韩精品不卡在线视频| 亚洲av成人精品爽爽-国产麻豆91在线播放-国产精品久久精品久久精品-蜜臀久久综合一本av| 国产丝袜在线精品丝袜不卡-精品一区二区三区爆白浆-在线不卡小视频播放网站-视频二区中文字幕在线播放| 久久噜噜噜精品国产亚洲综合-91精品国产高清久久福利-精品国产一区二区三区麻豆-日本加勒比一区二区在线观看免费| 国产精品剧情一区在线观看-精品伊人久久大香线蕉-一起草视频在线播放观看-精品少妇人妻av一区二区蜜桃| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 精品视频人妻少妇一区二区三区-人妻中文字幕一二三区-日本老熟妇成熟老妇人-东京热国产精品二区三区| 欧美福利在线观看视频-日本少妇一区二区三区四区-日韩人妻丝袜中文字幕-亚洲一区二区三区最新视频| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区|