色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The size of WC grains is of great significance to the friction and wear properties of cemented carbide. It is generally believed that coarse-grained cemented carbide has poorer wear resistance than fine-grained cemented carbide. After the grain refinement of cemented carbide, the size of the hard phase decreases, increasing the surface area of the hard phase grains and the bonding force between the grains, and the binder phase is more evenly distributed around them, which can improve the hardness and wear resistance of the cemented carbide. In this paper, the author conducts friction and wear experiments on cemented carbide to analyze the friction and wear properties under different parameters and the material removal mechanism, providing experimental evidence for the optimization design of high-speed cutting tool materials, reasonable material selection, and the study of high-speed cutting wear mechanisms.

Experiment

Test Materials

Three types of WC-6Co cemented carbide with different grain sizes were selected for the test. The size of the cemented carbide disc was φ55mm×4mm, and the surface was rough ground, finely ground, and polished. The mating material used was Al?O? balls with a diameter of 9.5mm. Both samples were ultrasonically cleaned in acetone for 20 minutes and dried for use. The material properties are shown in Table 1.

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 2

Friction and Wear Test

The test was conducted on a UMT-2 multi-functional friction and wear testing machine produced by CETR Corporation in the United States, using a ball-on-disc contact method. The structure of the testing machine is shown in Figure 1. The cemented carbide friction disc was attached to the working table with double-sided tape, and the Al?O? ball was placed in the fixture. The two types of mating materials produced mutual movement and force of action. The friction force generated was detected by the sensor, and the curves of friction force, normal force, and friction coefficient were automatically generated by the related software according to Coulomb’s law.

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 3

The test was conducted at room temperature, with normal forces of 10N and 20N respectively, and the linear velocities of the friction pair sliding were 40m/min, 80m/min, 120m/min, and 160m/min. The sliding distance was 500m. After the test, a scanning electron microscope (SEM) was used to observe the wear scar surface morphology of the upper and lower samples, and an X-ray energy dispersive spectrometer (EDS) was used to detect the elemental composition of the worn surfaces. All samples were analyzed for the elemental composition of the friction and wear surfaces under the same conditions.

Results and Analysis

Friction and Wear Performance

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 4

Figure 2 shows the friction coefficient curve of ZH cemented carbide drawn by the testing machine’s accompanying software (load 20N, sliding speed 160m/min). The experiment found that each friction process follows a similar pattern, that is, the initial dynamic friction coefficient undergoes a rapid increase from the initial value during the transition period, and then remains relatively stable, showing a fluctuating characteristic in the stable phase. In the beginning, under the action of the normal load, only local micro-convex bodies on the friction surface are in contact, the adhesive area is small, and the molecular attraction on the contact surface is weak, so the friction coefficient is small; as the friction process progresses, the micro-convex bodies interfere with each other, gradually get worn down, the adhesive area increases, and the molecular attraction also increases, leading to a gradual increase in the friction coefficient. The entire friction process is a continuous process of the contact surface adhering and then being sheared under the action of shear stress. Due to the peeling and breaking of the Co phase on the surface, the wear of the sample surface occurs, and the local adhesion on the surface quickly reaches a dynamic equilibrium, resulting in the friction coefficient of the surface being maintained within a relatively stable range, which is called the stable period.

Most scholars use the average value of the friction coefficient over a period of time (distance) as a characterization parameter of friction behavior. Therefore, this experiment selects the average value during the stable friction phase as the friction coefficient of the cemented carbide under the corresponding parameters. Figure 3 shows the friction coefficients of three types of cemented carbide under different loads and speeds.

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 5

It can be seen that with the increase of friction speed and load, the friction coefficient of the cemented carbide generally shows a decreasing trend, and the decrease is most obvious in the transition from relatively low speed (40m/min and 80m/min) to high speed (120m/min and 160m/min). From the perspective of material, the friction coefficient of ZH cemented carbide is smaller than that of the other two materials, and the friction coefficients of ZHX and HG cemented carbides are not significantly different, with the friction coefficient of HG cemented carbide being slightly larger.

Wear Mechanism

After the friction and wear tests, the microstructure of the worn surfaces of each sample was observed using a scanning electron microscope (SEM), and SEM images were taken, along with an analysis of the surface composition. The friction and wear mechanisms of the cemented carbide under different friction parameters are similar, as shown in Figure 4 (sliding speed 160m/min, load 20N).

How Grain Size Transforms Cemented Carbide's Friction and Wear Performance 6

In the initial stage of cemented carbide wear, the binder phase Co undergoes plastic deformation, and the surface layer of Co is extruded by the WC grains. Due to the low hardness and good ductility of Co, under certain conditions, a micron-scale friction film can form on the surface, while the harder WC particles gradually protrude from the friction surface, preventing further rapid wear of the surface and allowing the friction process to enter a relatively stable stage. As the binder phase Co continues to be lost, the WC framework of the material is damaged, and the dislocation density within the WC particles significantly increases. When the dislocation density accumulates to a certain extent, microcracks will form on the WC particles, causing the WC particles to begin to pull out from the cemented carbide matrix. The detached WC particles remain in the wear area, transforming into abrasive particles, which, under the action of the load, compress against the matrix, resulting in new plastic deformation and grain damage.

cemented carbide

As can be seen from Figure 4, as the grain size of the cemented carbide decreases, the grain density increases, and the degree of surface wear decreases. The surface of the ZHX cemented carbide shows no obvious shedding of WC particles, while the surface density of HG is very good, with almost no obvious shedding of WC particles. Therefore, for the traditional grain size cemented carbide ZH, the main wear mechanism is abrasive wear caused by the extrusion of the binder phase Co and the shedding of WC grains. As the grain size decreases and the density of the fine-grained cemented carbide increases, the phenomenon of WC grain spalling decreases, Co still wraps around the WC, the microstructure of the material remains intact, and most grains only undergo a certain degree of plastic deformation.

Conclusión

The size of WC grains has an important effect on the friction and wear properties of cemented carbide. As the grain size decreases, the friction coefficient slightly increases, and the wear resistance is enhanced.

The friction coefficient of cemented carbide is influenced by speed and load, and it shows a decreasing trend with the increase of speed and load.

The wear mechanism of traditional grain size cemented carbide is mainly characterized by the extrusion of the binder phase Co and the fracture and spalling of the hard phase WC grains; the grain spalling phenomenon of fine-grained cemented carbide is not obvious, and the main wear mechanism is plastic deformation.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

亚洲av成人午夜福利在线观看-日韩精品成人影院久久久-国产在线高清不卡一区-激情五月另类综合视频| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 久热这里只有精品视频66-国产资源精品中文字幕-亚洲免费视频一区二区三区四区-亚洲国产特一特二区精品分布| 91精品国产精品国产-国产成人一区二区免av-亚洲av激情在线观看-一区二区三区亚洲精品在线观看| 亚洲中文字幕中出在线-美女口爆吞精在线播放-亚洲欧美清纯唯美另类-国产一区二区三区免费观看不卡| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 在线观看日韩不卡视频-深夜福利成人羞羞免费视频-日韩欧美精品综合另类-黄色特级一级片中文字幕| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| 亚洲无吗视频在线观看-成人免费在线视频平台-国产午夜视频看看果冻-国产黄色片国产黄色片| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 国内自拍精品视频在线-欧美黑人巨大一区二区三区-中文字幕日韩精品人妻-婷婷激情五月天中文字幕| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 正在播放会所女技师口爆-久热久热精品在线视频-久久久精品蜜桃久久九-亚洲精品无吗无卡在线播放| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 亚洲精品在线观看蜜臀-亚洲日本va中文字幕久久-欧美不雅视频午夜福利-日韩卡一卡二卡三卡四| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 欧美亚洲午夜精品福利-青草在线视频免费观看-亚洲国产精品久久又爽av-久久少妇呻吟视频久久久| 人日本中文字幕免费精品-日本口爆吞精在线视频-玖玖玖玖视频在线观看-国产精品内射在线播放| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 亚洲香蕉久久一区二区三区四区-国产夫妻内射一级一片-成人午夜福利片免费观看-一区二区三区四区黄色网|