色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Shield tunneling cutter are the key supporting tools for tunneling?machines, and their performance and service life determine the excavation efficiency of the entire project.

carbide?shield tunneling cutter?usually come in three types:

1Soft soil cutter: used for excavation in soft soil, sand layers, and small particle sandstone formations where the stratum is loose and there is no need to break the rock layer with a roller cutter. The scraper is used to scrape and disturb the face only, and all tools are carbide cutting blades.

2Composite cutte : used for excavation in various geological formations such as sand and rock layers. In this case, the rock needs to be broken by the roller cutter, and then the scraper is used to scrape off the part of the rock between the two cutter rings. As the rock has already been compressed and cracked by the roller cutter, it is no longer dense, and the scraper can easily cut it. Therefore, the tools in this case are composed of roller cutters and carbide cutting blades.

3 Hard rock cutter: used for excavation in highly dense pure rock formations. The roller cutter breaks the rock, and as the cutter continues to penetrate, the cracks connect and form slag, which is peeled off from the surface of the cutter head. There is no need for a carbide scraper to scrape the residual rock, so no carbide tools are required. Only several wear-resistant steel plates need to be set at the slag discharge port to collect the slag. Therefore, the tools in this case consist of roller cutters and wear-resistant scraper blades.

The 2 Typical Failures of Carbide Shield Tunneling Cutter and How do We Tackle Them 1

Forms of failure for carbide?shield tunneling?cutters

Through a large number of engineering practices, it has been found that the proportion of tool failure caused by normal wear to the limit is only about 45% of all failed tools. The proportion of carbide cracking in the failure of carbide shield tunneling cutters is about 35%, the proportion of carbide shedding in all cutter damage is about 15%, and the proportion of tool failure caused by other reasons is only about 5%.

The following are several common forms of failure for carbide?cutters:

 

carbide?cracking

Cracking refers to the phenomenon of carbide?fracturing under external impact force. The reasons for the cracking of the shield tunneling cutter?are as follows:

1 Improper selection of carbide?grade. If high wear-resistant and low toughness carbide?is selected in high-impact formations, it is extremely easy to cause carbide?cracking.

2 Problems with welding process. carbide?and steel substrate are brazed with copper-based/silver-based solders. Improper control of the welding process will cause microcracks in the carbide, and subsequent impact will cause crack propagation, ultimately leading to alloy cracking.

3 Poor welding heat treatment.

a.If the carbide is not heated to a certain temperature before welding and directly heated by medium-frequency induction, the welding process will generate excessive thermal stress.

b.If the welded cutteris not immediately quenched in a tempering furnace after welding, the alloy and steel substrate will cool too quickly, and the difference in thermal expansion coefficients between the carbideand steel will cause inconsistent shrinkage during the cooling process, leading to carbide being pulled apart.

c.Improper shield operation when encountering geological mutations or isolated rocks. If the shield encounters geological mutations, uneven hardness of the formation, or isolated rocks during operation, and the shield driver does not notice or take measures, the cutterwill be subjected to a huge impact, causing carbide to crack.

 

Carbide detachment

carbide?detachment refers to the phenomenon where the carbide?completely separates from the steel substrate. The main reasons for carbide?detachment are as follows:

Poor brazing process between carbide?and steel substrate, resulting in insufficient bonding strength. When cutting through rock and soil, the welding seam between the carbide?and steel is pulled apart, causing the alloy to detach. The industry-recognized bonding strength for carbide?and steel brazing is 245 MPa. Only by improving the brazing strength can the carbide?be prevented from easily detaching.

cortadores de túneles de escudo

To make a conclusion, common forms of shield cutter failure include three types: cutter cracking, cutter deformation, and excessive wear. The main reason for cutter cracking is that the heat treatment hardness is too high or the hardness distribution is uneven. The main cause of cutter deformation is improper selection of cutter material or insufficient consideration of stress in the design. The main reason for excessive wear of the cutter body is improper selection of cutter material or insufficient wear-resistant cladding protection.

 

Ways to improve the lifespan of shiled tunneling cutters

Do a good carbide grade selection

For shield tunneling,due to the variability of geological conditions, a coarser WC particle size is required for the carbide. Therefore, commonly used grades are listed in order of increasing cobalt content: YG8C, YG11C, YG13C, and YG15C. In this order, the wear resistance of these carbides decreases while their impact toughness increases (see fig. 1).

The 2 Typical Failures of Carbide Shield Tunneling Cutter and How do We Tackle Them 2

fig.1

Get a reasonable material?selection of cutter substrate body

Q345 and Q235 are commonly used for cutter body materials in China. These two materials have low alloy elements and carbon content, making it impossible to significantly improve their material hardness and strength through heat treatment. As a result, the wear resistance and strength of the steel matrix are relatively low, and the probability of wear, deformation, and fracture is high. 40Cr, 42CrMo, 35CrMo, and 40CrNiMo alloy structural steel can be used as matrix materials, which contain various metal elements, improve the quenching ability of steel itself, and increase the hardness of the steel matrix to HRC 38-42 after heat treatment. Its impact resistance and fatigue strength are comprehensively improved.

 

carbide?brazing process?is important

Silver-based brazing is increasingly used in the welding of shiled tunneling cutter. It is known for its low temperature, good fluidity, and small welding stress, which greatly reduces the phenomenon of carbide virtual welding. Additionally, due to the low temperature, the welding process causes less damage to the carbide, and the possibility of forming welding stress and micro-cracks is smaller.

 

Wear-Resistant Overlaying Protection

In addition to carbide?and steel matrix, wear-resistant overlaying is also required for cutter tools. The main component of wear-resistant overlaying is tungsten-cobalt, which is remelted on the surface of the steel matrix by arc or plasma welding. This protects the cutter tool from wear and extends its service life.

 

Design?principle?of shield tunneling cutter matters

Cutter performance is not only related to the manufacturing process but also closely linked to the tool design. If the design is excellent, the performance of each part of the cutting tool can be utilized to its fullest potential. The tool may encounter a problem where the steel billet was bent and fractured. This problem was solved by changing the structure, which eliminated the issues of tool fracture and bending.

 

Reduce tunneling advancement methods’ impact

1 Attention should be paid to controlling the excavation parameters during shield tunneling. For example, when there is a geological mutation, the speed of the cutterhead and the advancement of the shield should be cut to reduce the impact of the geological mutation on the tools and avoid tool damage.

2 During the tunneling process, foam should be added in a timely manner and slurry soil should be improved to enhance its performance and reduce wear. The temperature of the slurry soil should be monitored to prevent excessive temperature that can aggravate tool wear.

3 Strengthen tool management, regularly inspect and replace tools to prevent one tool from failing and causing increased loads on adjacent tools, thus accelerating their damage rate. After replacing the tool, a low thrust and low-speed test push should be conducted to give the tool a buffering time.

 

Conclusión

1 In order to improve the service life of cutting tools, it is difficult to achieve significant results by improving them in only one aspect. Only by improving cutting tools from multiple aspects such as design, manufacturing, and application can their performance be maximized.

2 After abnormal failure of cutting tools, starting from the mechanism of damage and finding the root cause of the failure can achieve good results by adopting targeted measures.

 

 

 

 

 

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

国产老熟女精品视频大全免费-精品丰满熟女一区二区蜜桃-亚洲自国产拍性生活自拍-中文字幕熟女激情50路| 精品人妻一区二区三区免费-亚洲国产精品久久一区二区-国内久久偷拍视频免费-蜜桃视频在线观看网址| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 日本一区二区三区在线视频-国产午夜性生活免费视频-亚洲老熟妇av熟妇在线-久久热这里只有精品国产| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 人妻少妇中出中文字幕-久久国内精品一国内精品-中文字幕av一区二区三区蜜桃-日韩一区二区三区精品视频在线观看| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 日韩av中文字幕剧情在线-亚洲综合一区二区三区在线-91麻豆精品国产大片免费-日韩欧美亚洲制服丝袜| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 亚洲不卡视频一区二区三区-99久久精品国产成人综合-国内精品熟女亚洲精品熟女-亚洲日本成人在线观看高清| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 激情六月综合激情六月-韩国国产日韩在线观看视频-久久精品国产亚洲av高清色-亚洲熟女乱码一区二区三区| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 免费岛国av在线观看-国产一区二区三区av在线-亚洲成人精品综合在线-日韩亚洲一区二区三区在线| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 亚洲不卡福利在线视频-亚洲一级特大黄色小视频-日本久久一级二级三级-国产精品剧情av在线观看| 青青草原精品在线观看-日本久久精品狼人狠狠操-欧美深夜福利视频网站-麻豆密入视频在线观看| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 亚洲性生活免费播放av-成人深夜在线免费观看-久久国产精品亚洲精品-黄色大片亚洲黄色大片| 亚洲精品一区二区三区探花-av在线免费播放成人-精品亚洲一区二区三区在线播放-国产精品午夜福利亚洲综合网| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 97中文字幕一区二区三区-国产精品亚洲av无人-亚洲国产精品自产拍久久-成人深夜福利在线视频| 最新国产精品欧美日韩-日韩孕妇孕交在线视频-亚洲欧美日韩国产成人在线-欧美老熟妇性视频在线观看| 女生下面粉嫩在线视频-人妻熟女av国产在线-亚洲精品成人一区二区三区-商场偷拍女厕所撒尿视频| 日韩精品综合在线一区二区-极品人妻av一区二区三区-激情综合五月中文字幕-欧美免费在线观看黄片| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 久热99在线视频免费观看-黄片视频在线免费观看国产-国产精品av国产精华液-av在线男人的免费天堂| 亚洲精品色国语对白在线-黄片毛片av在线免费观看-久久精品有码av天堂-日韩一区二区三区高清视频| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 精品国产成人一区二区99-午夜爱爱视频最新深夜-午夜福利片中文字幕在线观看-成人性生交大片免费小优| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 国产精品色哟哟在线观看-亚洲精品国产自在现线-国产成人精品免费播放视频不卡-国产精品高潮呻吟av久久黄| 极品尤物视频在线观看-亚洲成人av在线蜜桃-美国一级黄色免费网站-免费观看四虎国产精品|