色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Cemented carbide has the edge of high hardness, good wear resistance, corrosion resistance and a small coefficient of thermal expansion. It is widely used in the manufacture of precision molds such as optical glass forming, metal drawing, and wear-resistant and corrosion-resistant parts. Cemented carbide mold not only has a long service life, more than ten times or even hundreds of times that of steel mold, but also has a very high surface quality of products. The glass lens and other parts of injection molding can meet the requirements of optical surface quality.

Cemented carbide is typically hard to machine material due to its poor machinability. Grinding and EDM are two of the most commonly used machining methods of cemented carbide die. With the appearance of CBN, diamond and other superhard tools, it is possible to directly cut cemented carbide, which attracts more and more attention. Foreign scholars have carried out more research. B. bulla et al. Analyzed the influence of machining parameters on the surface profile of cemented carbide in diamond turning. After obtaining the optimal machining parameters, further studied the influence of tool geometry on the surface roughness and tool wear. N. Suzuki et al. Carried out diamond ultrasonic elliptical vibration turning experiments on cemented carbide. It was found that the surface quality of ultrasonic elliptical vibration turning is better than that of ordinary turning, and the tool wear is smaller. Through the experiments, the hard alloy dies such as micro prism and spherical lens with optical surface quality were also machined.

Es una se?al importante medir el nivel de fabricación del troquel nacional para fabricar el troquel de carburo cementado preciso, complejo y de larga duración. La tecnología de microfresado tiene las ventajas de una alta eficiencia de mecanizado, una amplia gama de materiales de mecanizado, mecanizado de formas tridimensionales complejas, alta calidad superficial, etc. Es muy adecuado para mecanizar microtroqueles y micropiezas de carburo cementado y tiene una amplia perspectiva de aplicación. En este documento, las herramientas recubiertas de diamante se utilizan para el microfresado de carburo cementado. Se analizan la fuerza de corte, la calidad superficial y el desgaste de la herramienta.

Test equipment and experiment schedule of PDC micro milling

The self-built high-precision micro milling machine tool (see Figure 1) is used. The machine tool is specially designed for micro milling of small and micro parts. It is composed of marble bed, feed mechanism, high-speed air flotation spindle, motion control system based on PMAC, etc. Due to the small diameter of micro milling cutter, it is not easy to achieve an accurate tool setting. The machine tool is equipped with a microscope tool setting system, which can also be used to monitor the micro-milling process online.

Análisis técnico de microfresado en material de carburo por cortadores PCD 2

Figure 1 micro milling machine

Use diamond coated micro milling cutter with spiral edge (see Fig. 2a). The base material of the cutter is hard alloy, and a layer of diamond film is coated by chemical vapor deposition (CVD). The handle diameter is 6mm, the blade diameter is 1mm, the blade length is 2mm, the front angle of the tool is 2 °, the back angle is 14 °, and the spiral angle is 35 °. The tool tip arc radius γ ε measured from the SEM side view is about 11 μ m (see Fig. 2b); the tool edge arc radius γ β measured from the SEM top view is about 8 μ m (see Fig. 2C).

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 3

(a)                                                 (b)

Análisis técnico de micro fresado en material de carburo por cortadores PCD 4

(c)

 Figure 2 diamond coated micro milling cutter

Diamond coated tools are used to mill the straight grooves under different machining parameters. Before the test, the surface of the workpiece is polished, then fixed and clamped on the measuring instrument, and the sampling frequency is 20kHz. All tests are conducted under dry cutting conditions. See Table 1 for micro-milling test parameters. The spindle speed n is fixed at 20000r / min, the milling depth AP is 2 μ m and 4 μ m, and the feed rate of each tooth FZ is 0.3-1.5 μ M. After the test, ultrasonic cleaning machine was used to clean the workpiece. Mahr surface roughness meter was used to measure the machined surface roughness and micro profile curve along the feed direction. The machined surface morphology and tool wear morphology were observed by SEM.

Test results and analysis of PCD micro milling

Milling force signal is an important parameter to monitor the milling process, which can reflect the tool wear status and machining surface quality in real-time. In the milling process, the cutting thickness changes continuously, which increases from zero to the maximum and then decreases to zero periodically with the rotation of the milling cutter, resulting in the wave trough and wave peak of the milling force signal. From the wave form of the milling force signal, we can observe the abnormal behaviors such as uneven cutting and vibration in the process of machining.

Fig. 3 is a waveform diagram of milling force signal measured by test, where Fx is the main cutting force, Fy is feed force, and Fz is axial force. It can be seen from the waveform of milling force that the amplitude of axial force Fz is the largest in the three components of milling process, far greater than the other two components, followed by the main cutting force Fx and the minimum feed force Fy. The reason is that the milling depth AP in micro milling is very small, which is far smaller than the radius of tip arc γ ε of micro milling cutter. Only a small part of the bottom of tip arc is actually involved in cutting, which is equivalent to the cutting with a small main deflection angle, resulting in a large axial milling force component.

For every rotation of the milling cutter, two symmetrical cutting edges will successively participate in cutting, which shows two wave peaks in the milling force signal period. It can be seen from the oscillogram that the amplitudes of the two peaks are not the same, and the amplitudes of the first half period are obviously larger than the second half. This shows that in the actual milling process, the cutting thickness of two cutting edges of double tooth milling cutter is different, one cutting edge has more materials, the other cutting edge has less materials, resulting in uneven milling phenomenon. Serious non-uniform Milling will cause the fluctuation of milling force, increase the vibration in the process of machining, which is not conducive to the stability of micro milling.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 5

Figure 3 micro milling force signal waveform

The milling forces under different micro milling parameters are recorded during ﹣ test. The peak value of milling force corresponding to the maximum cutting thickness in the tool rotation cycle is taken as the test result, and the measurement results of X, y and Z components are shown in Figure 4. At the same milling depth, the milling force increases with the increase of the feed rate FZ of each tooth. The main cutting force Fx and the feed force Fy rise relatively gently. When the milling depth is ap=2 m and 4 m, the main cutting force Fx rises from 0.44N and 0.92N to 1.34N and 2.05N respectively, and the feed force Fy increases from the 1.34N and the second to the “Ho” and “the”; the axial force increases by a large amplitude, from the “Qi” and “the” to “the”. Similarly, the increase of milling depth will also lead to the increase of milling force. The axial force FZ in the three-way component is sensitive to the milling parameters. The reason is that the feed rate of each tooth FZ in micro milling is smaller than the edge arc radius γ β of the micro milling cutter, which makes the contact area between the back face of the bottom edge of the micro milling cutter and the workpiece relatively large, and the friction force on the back face accounts for a large proportion in the milling force.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 6

Fig. 4 curve of milling force changing with machining parameters

Surface quality of PCD micro milling

Cemented carbide is a kind of hard brittle material. In traditional cutting, the hard brittle material is usually removed in the form of brittle fracture, which results in brittle failure defects on the machined surface and affects the quality of machined surface. The results show that when the machining parameters are controlled so that the cutting thickness is less than a certain critical value, the brittle material can also have plastic deformation, and the smooth ductile machining surface is obtained, which is called ductile cutting. Figure 5 shows the surface morphology and profile curve of micro milled cemented carbide at AP = 2 μ m and FZ = 1.2 μ M. It can be seen from the figure that the machining surface morphology is mainly the reflection of tool geometry, with clear tool mark texture distributed. From the contour curve, the feed tool mark of the tool teeth can be observed, and there is almost no brittle failure defect. In micro milling, the actual cutting thickness is very small, which can realize the ductile cutting of cemented carbide. The cemented carbide material is removed in the way of plastic deformation to obtain good machining surface quality.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 7

(a)geometry of surface

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 8

(b) contour curve

Figure 5 machined surface morphology and profile

Fig. 6 shows the curve of surface roughness Ra of micro milling cemented carbide with machining parameters. It can be seen from the figure that the Ra value of the machined surface roughness of cemented carbide is very small due to the ductile cutting in micro milling. The surface roughness Ra increases with the increase of feed per tooth AP and milling depth FZ, but the effect of feed per tooth on surface roughness is greater than that of milling depth. When AP = 2 μ m and FZ = 0.3 μ m, the minimum surface roughness is 0.073 μ m; when AP = 4 μ m and FZ = 1.5 μ m, the maximum surface roughness is 0.151 μ M.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 9

(b) contour

Figure 6 shape and outline of machined surface

Fig. 6 shows the change curve of surface roughness Ra of micro milling cemented carbide with machining parameters. It can be seen from the figure that the Ra value of the machined surface roughness of cemented carbide is very small due to the ductile cutting in micro milling. The surface roughness Ra increases with the increase of feed per tooth AP and milling depth FZ, but the effect of feed per tooth on surface roughness is greater than that of milling depth. When AP = 2 μ m and FZ = 0.3 μ m, the minimum surface roughness is 0.073 μ m; when AP = 4 μ m and FZ = 1.5 μ m, the maximum surface roughness is 0.151 μ M.

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 10

(a)                                                 (b)

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 11

(c)

Diagram.7  micro geometry of wearing on cutting tool

Technical Analysis of Micro Milling on Carbide Material by PCD Cutters 12

Diagram.8 impact of milling length on surface roughness

Figure 8 shows the curve of surface roughness changing with micro milling path. It can be seen from the figure that the surface roughness Ra increases gradually with the increase of milling path. When the milling distance reaches 700m m, the surface roughness increases greatly; when the milling distance exceeds 700mm, the increase of surface roughness slows down; when the milling length is 1000mm, the surface roughness Ra reaches 0.224 μ M. After the tool wear, not only the milling force increases, but also the extrusion and friction of the workpiece become more serious, which increases the possibility of brittle failure of cemented carbide materials, causes brittle failure defects on the machined surface, worsens the machined surface quality, and increases the surface roughness.

Conclusion so far

(1) because the milling depth is far less than the radius of the tip arc, only the bottom of the tip arc is actually involved in the cutting, resulting in a large axial component. In the micro milling process of diamond coated double tooth milling cutter, there is a phenomenon of non-uniform milling, and the milling force increases with the increase of feed per tooth and milling depth.

(2) micro milling is very small, which can realize ductile cutting of cemented carbide and obtain good machining surface quality. The surface roughness Ra increases with the increase of feed per tooth and milling depth.

(3) results in uneven wear of two blades and serious wear of bearing blades. The surface roughness increases with the increase of milling path.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

看女人毛茸茸下面视频-日本一区二区黄色高清电影-隔壁人妻偷人中字免费-亚洲中国美女精品久久久| 少妇人妻偷人偷人精品-国产精品黄色在线播放-亚洲熟伦熟女新五十路熟妇亚洲-国产综合91精品百人斩| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 在线视频自拍第九十七页-亚洲岛国精品视频在线观看-亚洲av日韩一区在线观看-日韩精品中文一区二区三区| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 九九九热在线免费观看-亚洲午夜理论片在线观看-欧美日韩亚洲国产第一-国产高清一区二区av在线| 国产精品国产一区日韩一区-老色99久久九九爱精品-国产亚洲精品福利一区-亚洲av乱码av一区二区三区| 四虎精品高清在线观看-日韩有码国产中文字幕-国产一区二区三区亚洲污在线观看-亚洲av永久久无久之码精| 亚洲国产综合成人久久-日本一区二区三区精彩视频-激情四射五月天亚洲婷婷-人妻高清视频一区二区三区| 91精品欧美人妻一区二区-日本女人体内射精视频-欧美一级一片内射少妇-久久99国产综合精品女人| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 亚洲黄色美女视频大全-成上人色爱av综合网-亚洲一区二区三区激情在线观看-久久91精品国产一区二区| 尤物国产精品福利在线网-中日韩一二三级黄色永久视频-加勒比av免费在线播放-91欧美精品一区二区三区| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan| 无套进入极品美女少妇-新久久久高清黄色国产-国产肥臀在线精品一区二区-深夜午夜福利在线观看| 亚洲天堂男人的天堂在线-亚洲激情欧美日韩在线-国产av剧情精品老熟女-色老头与人妻中文字幕视频| 加勒比中文字幕久久av-久久黄色美女三级久一点黄-国产精品无套高潮久久-久久婷婷综合色拍亚洲| 女人毛茸茸的外阴视频-成人激情午夜福利视频-国产精品性色一区二区三区-国产中文字幕欧美激情| 亚洲不卡福利在线视频-亚洲一级特大黄色小视频-日本久久一级二级三级-国产精品剧情av在线观看| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 久久成人av一区二区三区-人妻一区二区三区久久丰满-日韩在线播放视频不卡-亚洲成熟女人一区二区三区| 亚洲区一区二区三区四区-精品亚洲国产成人av-国产美腿丝袜诱惑在线观看-美女抠逼视频免费网站| 日本道二区二区视频-精品熟女视频一区二区三区国产-国产地区国产地区视频91-亚洲欧洲日产国码综合在线| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 熟妇女人妻丰满少妇中文-最新国产成人在线网站-亚洲性日韩精品一区二区三区-亚洲免费熟女做爰视频| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 加勒比日本东京热风间由美-少妇高潮喷水高清av-国产免费观看久久黄av-永久成人免费在线视频| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 四虎永久在线精品免费青青-久久久久久久 国内精品-国产精品四虎永久免费视频-男人天堂av免费观看| 国产精品一区二区三区av麻-蜜桃传媒免费在线播放-久久亚洲中文字幕精品-国产精品白嫩极品在线看| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区|