色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

High-speed milling technology has had a significant impact on mould processing procedures, transforming traditional processes such as “annealing → milling → heat treatment → grinding” or “electrical discharge milling → manual grinding and polishing” into streamlined processes where high-speed cutting can replace all previous steps. High-speed milling technology is not only suitable for the direct milling of hardened mould cavities (particularly for semi-finishing and finishing) but has also found widespread application in EDM electrode processing, rapid prototyping, and other areas. Extensive production practices have shown that using high-speed cutting technology can save about 80% of manual grinding time in subsequent mould processing, reduce processing costs by nearly 30%, achieve surface processing precision of 1 micrometer, and double the tool cutting efficiency.

Technical Characteristics of High-Speed Milling and Its Applications in the Mould Manufacturing Industry 1

High-Speed Cutting Milling Equipment

1.High Stability of Machine Bed Components

The bed and support components of a high-speed cutting machine must exhibit excellent dynamic and static stiffness, thermal rigidity, and optimal damping characteristics. Most machines use high-quality, high-rigidity gray cast iron for these components, with some manufacturers incorporating high-damping polymer concrete into the base to enhance vibration resistance and thermal stability. This not only ensures stable machine accuracy but also prevents tool chatter during cutting. Measures such as closed bed designs, integral casting of the machine bed, symmetric bed structures, and dense ribbing are also crucial for enhancing machine stability.

 

2.Machine Spindle

The spindle performance of high-speed machines is crucial for achieving high-speed cutting. High-speed cutting spindles typically operate at speeds ranging from 10,000 to 100,000 RPM, with spindle power greater than 15 kW. Spindle axial gaps between the tool holder and spindle are controlled to be no more than 0.005 mm using compressed air or cooling systems. Spindles are required to have rapid acceleration and deceleration capabilities, meaning they must have high angular acceleration and deceleration rates.

High-speed spindles often use liquid static pressure bearings, air static pressure bearings, hot-pressed silicon nitride (Si3N4) ceramic bearings, or magnetic suspension bearings. Lubrication is commonly achieved with oil-air lubrication or spray lubrication, and spindle cooling typically involves internal water or air cooling.

 

3.Machine Drive System

To meet the demands of high-speed mould processing, the drive system of a high-speed milling machine should have the following characteristics:

High Feed Speed: Research indicates that increasing spindle speed and feed per tooth is beneficial for reducing tool wear, especially for small-diameter tools. Common feed speed ranges are 20-30 m/min, with large lead ball screws allowing speeds up to 60 m/min and linear motors achieving up to 120 m/min.

High Acceleration: High-speed milling of complex 3D surfaces requires a drive system with good acceleration characteristics, with drivers providing high-speed feed (fast feed rate of about 40 m/min and 3D profile processing speed of 10 m/min) and accelerations and decelerations ranging from 0.4 m/s2 to 10 m/s2.

Most machine manufacturers use closed-loop position servo control with small lead, large-size, high-quality ball screws or large lead multi-head screws. Advances in motor technology have led to the development and successful application of linear motors in CNC machines. Linear motor drives eliminate issues such as mass inertia, overshooting, lag, and vibrations, speeding up servo response, improving servo control accuracy, and enhancing machine processing precision.

 

4.CNC System

Advanced CNC systems are key to ensuring the quality and efficiency of high-speed processing of complex mould surfaces. Basic requirements for CNC systems in high-speed cutting include:

High-Speed Digital Control Loop: Includes 32-bit or 64-bit parallel processors and hard drives with over 1.5 GB; extremely short linear motor sampling times.

Speed and Acceleration Feedforward Control: Digital drive systems with jerk control.

Advanced Interpolation Methods: Such as NURBS-based spline interpolation for good surface quality, precise dimensions, and high geometric accuracy.

Look-Ahead Function: Requires a large capacity buffer register to pre-read and check multiple program segments (e.g., up to 500 segments for DMG machines, and 1000-2000 segments for Siemens systems) to adjust feed speeds and avoid over-cutting when surface shapes (curvatures) change.

Error Compensation Functions: Includes compensation for thermal errors due to linear motors and spindles, quadrant errors, measurement system errors, etc. Additionally, high data transmission speeds are required.

Data Interfaces: Traditional data interfaces like RS232 serial ports transmit at 19.2 kb, while many advanced milling centers now use Ethernet for data transmission at speeds up to 200 kb.

Technical Characteristics of High-Speed Milling and Its Applications in the Mould Manufacturing Industry 2

5.Cooling and Lubrication

High-speed milling uses coated carbide tools and operates without cutting fluids, resulting in higher cutting efficiency. This is because the high centrifugal forces of the rotating spindle make it difficult for cutting fluids to reach the cutting zone, and even if they do, the high temperatures may cause the fluids to evaporate, reducing cooling effectiveness. Additionally, cutting fluids can cause rapid temperature changes at the tool edge, leading to cracking. Thus, dry cutting with oil/air cooling is employed. This method quickly blows away the cutting heat with high-pressure air, and atomized lubrication oil forms a thin protective film on the tool edge and workpiece surface, effectively extending tool life and improving surface quality.

milling cutters

Tools for High-Speed Cutting

Tools are one of the most critical factors in high-speed cutting, directly impacting processing efficiency, manufacturing costs, and product precision. High-speed cutting tools must withstand high temperatures, pressures, friction, impact, and vibrations. They should have good mechanical properties and thermal stability, including impact resistance, wear resistance, and thermal fatigue resistance. The development of high-speed cutting tools has been rapid, with common materials including diamond (PCD), cubic boron nitride (CBN), ceramic tools, coated carbide, and titanium carbide (TiC) and titanium nitride (TiN) hardmetals.

For cutting cast iron and alloy steel, carbide is the most commonly used tool material due to its good wear resistance, although its hardness is lower than CBN and ceramics.

To improve hardness and surface finish, coating technologies such as titanium nitride (TiN) and aluminum titanium nitride (TiAlN) are employed. Coating technology has evolved from single-layer to multi-layer and multi-material coatings, becoming a key technology for enhancing high-speed cutting capabilities. Carbide inserts with titanium carbonitride coatings in the diameter range of 10-40 mm can process materials with Rockwell hardness below 42, while titanium aluminum nitride-coated tools can handle materials with Rockwell hardness of 42 or higher.

For high-speed cutting of steel, tools made from heat-resistant and fatigue-resistant P-class carbide, coated carbide, CBN, and CBN composite materials (WBN) are preferred. For cutting cast iron, fine-grain K-class carbide should be used for roughing, and composite silicon nitride ceramics or polycrystalline CBN (PCBN) tools for finishing.

For precision milling of non-ferrous metals or non-metallic materials, polycrystalline diamond (PCD) or CVD diamond-coated tools are recommended. When selecting cutting parameters, attention should be given to the effective diameter for round blades and ball end mills. High-speed milling tools should be designed with dynamic balancing, and the cutting edge angles should be adjusted compared to conventional tools.

High-Speed Milling Processes and Strategies

High-speed machining includes roughing, semi-finishing, finishing, and mirror finishing to remove excess material and achieve high-quality surface finishes and fine structures.

 

Desbaste

The primary goal of mould roughing is to maximize material removal rate per unit time and prepare the geometric profile of the workpiece for semi-finishing. The process plan for high-speed roughing involves a combination of high cutting speeds, high feed rates, and small cutting depths. The most commonly used CAM software employs methods like spiral contouring and Z-axis contouring, which generate continuous, smooth tool paths in a single pass without retracting the tool, using arc entry and exit methods. Spiral contouring avoids frequent tool retraction and approach, minimizing the impact on surface quality and machine wear. Steep and flat areas are processed separately, with optimized tool paths generated using spiral methods with minimal retraction to achieve better surface quality. In high-speed milling, it is essential to use arc entry and exit methods and maintain a consistent tool path to minimize machine wear and achieve higher material removal rates.

 

Semi-Finishing

The semi-finishing process focuses on improving surface quality and dimensional accuracy, bridging the gap between roughing and finishing. The cutting speeds are higher than those used in traditional milling but lower than those in finishing. The primary goal is to achieve a better surface finish and precision by using a reduced depth of cut and controlling feed rates. Advanced CAM systems generate tool paths using techniques like trochoidal milling and adaptive clearing, which adaptively change cutting parameters based on the workpiece geometry and tool path. This method enhances tool life and surface quality while reducing cutting forces and thermal stresses.

 

Refinamiento

Finishing operations aim to achieve the final surface quality and dimensional accuracy. High-speed finishing involves higher cutting speeds and lower depths of cut, using techniques such as high-speed finishing cuts with constant engagement to ensure a smooth and uniform surface. Tool paths are optimized using advanced CAM software to achieve the desired surface finish and accuracy. Techniques like high-speed trochoidal milling and constant chip load milling are used to achieve excellent surface finishes and tight tolerances.

 

Mirror Finishing

Mirror finishing is the final step to achieve an exceptionally smooth and reflective surface. High-speed mirror finishing processes often involve special tools and techniques, including abrasive tools and polishing compounds. The key is to minimize surface irregularities and achieve a mirror-like finish with high precision. Techniques such as high-speed burnishing, polishing, and super-finishing are employed to achieve the desired surface quality.

 

Conclusión

High-speed milling technology has revolutionized the mould manufacturing industry by significantly enhancing machining efficiency, precision, and surface quality. The integration of advanced machining equipment, CNC systems, tooling technologies, and innovative milling strategies has enabled the production of complex mould cavities with high accuracy and reduced processing times. As technology continues to advance, high-speed milling will play an increasingly crucial role in meeting the evolving demands of the mould manufacturing industry.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 久久国产精品一品二品-国产二区中文字幕在线观看-极品性感尤物少妇粉嫩逼-亚洲成人av男人的天堂网| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 国产丝袜在线精品丝袜不卡-精品一区二区三区爆白浆-在线不卡小视频播放网站-视频二区中文字幕在线播放| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 亚洲av大片免费在线观看-97夫妻午夜精品在线-丰满人妻熟妇乱又伦精另类视频-国产男女啪啪视频观看| 国产免费午夜精品福利视频-久热99精品免费视频-久久久免费精品国产色夜-亚洲黄色不卡在线观看| 91高清精品一区在线观看-成人黄色大片免费网站-国产成人综合亚洲另类-气质女人呻吟内射在线观看| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 在线免费观看四虎黄色av-亚洲成人av高清在线-成人性生交大片免费在线-四虎成人精品在线观看| 国产大波精品一区二区在线-男女床上激情免费网站-日韩成人在线高清视频-国产精品视频免费自拍| 四虎在线观看永久免费-久久精品熟女亚洲av香蕉-av国内精品久久久久影院三级-亚洲国产一区二区三区av| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 亚洲黄色一级二级三级在线观看-成年人手机视频在线观看-都市激情校园春色亚洲一区-九九久久免费视频一区二区三区| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 国产成人自拍视频精品-丝袜美腿亚洲一区二区刘亦菲-91精选国产在线视频-欧洲美熟女乱又伦免费| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 日韩黄色精品中文视频-久久精品国产亚洲懂色-欧洲美女日韩精品视频-国产一区二区三区精品愉拍| 亚洲午夜福利在线看片-草草影院在线观看国产-中文字幕在线国产有码-精品99成人午夜在线| 国色天香精品亚洲精品-日韩精品电影免费观看-亚洲精品中文字幕综合-成人午夜视频福利在线观看| 国产大波精品一区二区在线-男女床上激情免费网站-日韩成人在线高清视频-国产精品视频免费自拍| 自拍成人免费在线视频-91在线高清视频播放-国产美女口爆吞精系列-午夜福利黄片在线观看| 成人av毛片18岁免费看-亚洲熟妇av一区二区三区宅男-欧美日韩另类视频在线观看-另类亚洲国产另类亚洲| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 人妻日韩人妻中文字幕-日韩情色中文字幕在线-日韩av大全在线观看-日韩少妇高潮视频免费看| 中文字幕在线乱码日本-亚洲国产成人久久精品99-交缠的肉体中文字幕在线-久热精品视频在线免费| 成人午夜在线免费播放-97精品在线观看免费-亚洲av一级片在线观看-国产原创自拍看在线视频| 99久久久国产精品视频-亚洲最大的福利视频网站-日韩人妻精品一区二区在线-中文字幕乱码精品在线观看| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 久久热大香蕉在线视频-nana在线观看高清视频 视频-久久最新视频在线观看-日韩高清不卡视频在线观看| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 一本大道加勒比东京热-国产一二三区亚洲精品美女-国产在线麻豆在拍91精品-久久久久成人亚洲国产| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看|