色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

With the development of the automotive, aerospace, and aerospace industries, as well as the increasing demand for lightweight and high-strength materials, the application of non-ferrous metals, carbon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (GFRP), fiber reinforced metals (FRM), graphite, ceramics, and other new materials in the industry is becoming more widespread. As a result, higher requirements are being placed on the cutting tools used to process these materials. carbide, as a widely used tool material, does not provide ideal tool life, machining quality, and machining precision when processing the aforementioned materials. Diamond is considered an ideal tool coating material due to its high hardness, high wear resistance, low friction coefficient, low thermal expansion coefficient, and high thermal conductivity. Table 1 provides a comparison of the properties of diamond and other coating materials.

Table 1 Mechanical and Thermal Properties of Common Hard Coatings Strength of materials

Materiales Melting point or decomposition temperature(℃) Dureza

HV

MPa

Yang’s

modulus

kN/mm2

Coefficient of thermal expansion

10-6k-1

Thermal conductivity

W/(m.K)

Al2O3 2047 21000 400 6.5 ~25
Diamond 3800 80000 1050 1 1100
c-BN 2730 50000 440
SiC 2760 26000 480 5.3 84
Si3N4 1900 17000 310 2.5 17
TiB2 3225 30000 560 7.8 30
TiC 3067 28000 460 8.3 34
Esta?o 2950 21000 590 9.3 30
ba?o 2776 23000 720 4.0 35

 

Las herramientas de carburo de diamante generalmente se clasifican en herramientas de carburo de diamante natural, herramientas de diamante policristalino (PCD) y herramientas recubiertas con película de diamante. Los diamantes naturales rara vez se utilizan en la industria debido a su escasez y alto costo. Las herramientas PCD tienen procesos de fabricación complejos, altos costos y una variedad limitada, lo que restringe su aplicación industrial generalizada. Por otro lado, el método de deposición química de vapor por plasma (PCVD) permite la deposición de películas de diamante en las superficies de herramientas de formas complejas, mejorando la eficiencia y reduciendo los costos de producción. La Figura 1 muestra una comparación del desgaste entre fresas verticales de carburo cuadradas con y sin recubrimientos de diamante al mecanizar aleaciones de silicio y aluminio. La película de diamante CVD prolonga significativamente la vida útil de las herramientas de carburo, lo que convierte a las herramientas recubiertas de diamante en herramientas de alto rendimiento con perspectivas de desarrollo prometedoras.

carbide tool

2Improvement of preparation process

2.1 surface pretreatment

Due to variations in tool manufacturers, tool materials, and distribution channels, the surface condition of cutting tools can vary significantly. However, diamond coatings have strict requirements for the substrate surface condition. In order to obtain diamond-coated tools with stable quality, appropriate pretreatment of the substrate surface is necessary.

1)Surface purification and coarsening

During the manufacturing process of carbide?tools, it is inevitable that some contaminants, adsorbates, and oxides will remain on the tool surface. These substances can hinder direct contact between the diamond film and the substrate, as well as affect the quality of subsequent processes. For example, surface residues of oil can affect the etching effect of acid on Co. Therefore, surface purification is necessary during pretreatment.

Common methods of purification include chemical cleaning and liquid ultrasonic cleaning. When purifying the tool surface, suitable purification agents should be chosen based on the tool manufacturing process of the tool manufacturer. Surface roughening can alter the microstructure of the substrate surface, remove WC particles with low surface adhesion, increase the specific surface area of the substrate, increase the surface energy of the substrate, improve the nucleation density of diamond on heterogeneous substrates, and enhance the adhesion between the film and the substrate. Common methods include mechanical grinding and liquid ultrasonic treatment.

 

2)Surface seeding

Diamond powder suspended in a solution is used for ultrasonic treatment of carbide. For flat-surfaced tools, diamond powder can also be used as an abrasive for grinding. This not only removes surface impurities and facilitates the detachment of poorly adhered WC particles, but also increases surface roughness. Moreover, the residue of fragmented diamond powder within surface defects of carbide?provides nucleation cores for CVD diamond deposition, thereby enhancing nucleation density.

How has the research progress been on diamond-coated carbide tools? 2

3)Optimization of surface force points

Due to the significant thermal stress between diamond and the substrate, this thermal stress is concentrated more at the cutting edge of the tool. As a result, the adhesion between the diamond film and the substrate is particularly weak at the cutting edge. This can be addressed by optimizing the geometric shape of the stress point, such as increasing the ratio of r/h (where r represents the curvature radius of the cutting edge and h is the thickness of the diamond film). This helps reduce the lateral force between the diamond film and the substrate, disperses the load exerted on the diamond film during tool use, and extends the wear resistance of the diamond film.

2.2 Reducing the adverse effects of Co on diamond deposition

Due to the catalytic effect of Co on graphite formation at CVD deposition temperatures, it is necessary to avoid direct contact between Co and the diamond film or eliminate the reactivity of Co.

1)acid etching

Due to the electrode potential of Co being -0.28V, acids can be used to etch the surface layer of Co on the substrate. Commonly used acids include HCl, HNO3, H2SO4+H2O2, etc.

2)plasma etch

This method involves treating carbides with hydrogen plasma or oxygen-containing hydrogen plasma to remove surface Co in the shallow layer by utilizing the reaction between plasma and Co to form volatile compounds. Simultaneously, WC is reduced to metallic W by the hydrogen plasma, and the metallic W combines with carbon in the subsequent CVD deposition of diamond films, forming small WC particles with sizes ranging from 10 to 100 nm. This refinement of the surface increases the contact area between the diamond film and the substrate, further enhancing the adhesion strength of the diamond film. Figure 3 illustrates the schematic of decarbonization and reduction.

3) Passivated cobalt

Using chemical substances to react with cobalt metal, stable compounds are formed to deactivate the cobalt in the surface layer. Examples include chemical passivation and plasma passivation.

4)Chemical reaction displacement method

The carbide?can be immersed in a chemical reagent, and through a displacement reaction, the surface cobalt metal can be replaced by another substance, thereby achieving the removal of cobalt from the surface layer. This method also takes into account the mechanical strength of the alloy. For example, copper (with an electrode potential of 0.343V) can be used to replace cobalt.

5)Selection of substrate materials

Another approach is to directly use WC as the substrate without the adverse factors of the binder phase Co by employing high-temperature sintering. This allows the tool to withstand higher temperatures during diamond film deposition and accelerates the deposition rate. Alternatively, diamond particles can be added to the raw materials of the tool before hot pressing and sintering, and through appropriate processing techniques, a gradient of increasing diamond particle concentration can be formed from the body to the surface of the tool. In this way, the diamond in the tool serves as an excellent nucleation core for CVD diamond, thereby enhancing nucleation density.

2.3 Apply intermediate transition layer

The residual stresses within the diamond coating have a significant impact on adhesion. These residual stresses typically consist of two components: thermal stress σth and intrinsic stress σi. The thermal stress is caused by the difference in thermal expansion coefficients between the coating and the substrate. According to empirical formulas:

σth=Ef(αf-αs)(Ts-Tr)/(1-ψf)

Ef, ψf, and αf represent the elastic modulus, Poisson’s ratio, and thermal expansion coefficient of the diamond coating, respectively. They are taken as 1228 GPa, 0.07, and 1.0 × 10-6 K-1, respectively. αs represents the thermal expansion coefficient of the WC-6%Co cemented carbide substrate, which is taken as 5.4 × 10-6 K-1. Ts is the substrate surface temperature during deposition, taken as 1023 K, and Tr is room temperature, taken as 298 K. Based on these values, the estimated thermal stress in the coating is -4.21 GPa.?It ?prevents direct reactions between the film and the substrate during deposition, such as excessive carbon diffusion into the substrate and diffusion of Co from the substrate’s depths to the surface, which could affect diamond growth.

When selecting an intermediate transition layer material, the following factors should be considered:

  1. Moderate thermal expansion coefficient to accommodate the thermal stress between the diamond film and the substrate.
  2. Good adhesion to both the cemented carbide and diamond materials.
  3. Stable chemical properties and sufficient mechanical strength.
  4. Ability to react with Co to form stable compounds or prevent Co migration to the surface during high-temperature deposition. For example, when using a B/TiB2/B transition layer, the B on the substrate surface can react with Co to form stable CoB, thereby passivating Co. The surface layer of B can provide good adhesion to the diamond film, while the main body of the transition layer, TiB2, effectively inhibits Co migration. This structure is illustrated in Figure 4(a). A composite transition layer of TiCN/Ti can effectively prevent the formation of a third phase, Co3W3C, which may reduce the strength of the tool substrate due to decarburization treatment. Ti can form a strong connection with the diamond film, as shown in Figure 4(b).

How has the research progress been on diamond-coated carbide tools? 3

2.4 Control of sedimentation process for carbide tool

The residual stress within the diamond coating also includes intrinsic stress (σi), which can be divided into growth stress and interface stress. The growth stress is mainly caused by compressive stress induced by impurities (graphitic carbon, amorphous carbon, hydrogen, etc.) in the coating and tensile stress generated by defects such as voids and dislocations. It is primarily influenced by the growth process. Therefore, controlling the deposition process can help improve the intrinsic stress.

1)Temperature control

Temperature has a significant influence on the growth rate, morphology, and inherent quality of diamond films. Additionally, temperature has a notable impact on the migration of Co. At high temperatures, Co not only facilitates the conversion of carbon into graphite but also increases the migration rate of Co towards the surface. This leads to significant erosion of Co by plasma, resulting in a depletion of Co in the carbide?substrate phase and affecting the strength of the tool itself. Conversely, excessively low deposition temperatures can increase the non-diamond components in the film. Figure 5 illustrates the variation of cobalt content on the surface of the carbide?substrate with different temperatures.

Therefore, the suitable temperature range for depositing CVD diamond films on carbide?substrates is narrower compared to other materials such as Si or Mo. The deposition temperature can be lowered by utilizing halogens for enhanced etching of non-diamond carbon. For example, Trava-Airoldi et al. achieved a deposition temperature as low as 580°C by adding CF4 to the reaction gas.

How has the research progress been on diamond-coated carbide tools? 4

2)Control of carbon containing gas source concentration

A high concentration of carbon-containing gas source can increase the growth rate of diamond films. However, it also leads to an increase in non-diamond components within the diamond film. Therefore, it is essential to control the concentration of the carbon-containing gas source. Figure 6 illustrates the influence of different methane concentrations on the internal stress of diamond films.

 

How has the research progress been on diamond-coated carbide tools? 5

3)Diamond doping

Doping diamond with a small volume of boron (B) can improve the chemical composition of the carbon transition layer between the diamond film and the substrate, enhancing the bonding strength between the film and the substrate. It also helps improve the stress distribution within the interface layer. Boron sources used for doping include B203 and B2H6.

2.5 Treatment after sedimentation

This method involves slow cooling of the coated tool once the diamond film has reached the desired thickness, aiming to reduce the thermal stress caused by thermal expansion differences.

The aforementioned methods have been introduced to enhance the adhesion between the diamond film and the carbide?substrate. In practical applications, multiple methods are often combined and implemented based on specific requirements and needs.

3 Existing problems and prospects

Currently, although some foreign companies have diamond-coated cutting tools available on the market, the constraints on adhesion have limited their application to only a few grades of carbide?tools. Moreover, the thickness of the diamond coating is generally less than 30 μm. As shown in Figure 7, there is significant variation in performance even among products from the same manufacturer. Additionally, for special geometric tools like end mills, it remains a challenge for researchers to control the heat flow and ensure uniform heating during mass production. Therefore, future research directions for the process of diamond-coated carbide?tools can be categorized as follows:

  1. Expanding the range of carbidetools that can be coated with diamond.
  2. Increasing the thickness of the diamond coating.
  3. Ensuring stability and consistency in quality during large-scale production.

?Cómo ha sido el progreso de la investigación sobre las herramientas de metal duro recubiertas de diamante? 6

Vc2 represents uncoated carbide?tools, PCD represents polycrystalline diamond carbide tools, and others represent CVD diamond-coated tools.

In summary, the production challenges of CVD diamond-coated carbide?tools lie in the less-than-ideal adhesion. However, recent research progress indicates that in-depth studies on improving adhesion processes have significant implications for producing high-quality, cost-effective diamond-coated tools that meet industrial application requirements.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 国产一区二区精品在线播放-亚洲欧美精品伊人久久-亚洲精品日韩在线播放-国产精品色av一区二区三区| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女| 精品国产成人一区二区99-午夜爱爱视频最新深夜-午夜福利片中文字幕在线观看-成人性生交大片免费小优| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线| 第一亚洲自拍偷拍一区二区-国产精品成人一区二区不卡-中文字幕一区二区三区精品人妻-一区二区三区中文字幕在线播放| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 中文字幕亚洲综合精品一区-久久好视频久久这里有精品-国产在线传媒高清视频-日韩精品一区二区亚洲av失禁| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 少妇人妻午夜精品视频-亚洲乱妇老熟女爽到潮的片-最新国产黄色一区二区-亚洲一区国产精品喷潮| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 天天躁夜夜躁狠狠85麻豆-操美女逼视频免费软件-国产精品一区二区在线观看-一区二区三区免费观看视频在线| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站| 亚洲一区二区日韩精品在线观看-白浆高潮国产免费一区二区三区-热久久这里只有精品99-亚洲精品在线观看中文字幕| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 青青草视频成人在线公开-激情中文字幕一区二区三区-亚洲国产精品综合久久网各-日本中文字幕有码高清| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 天堂av免费资源在线观看-青春草在线视频播放免费观看网站-亚洲精品中文字幕久久桃色-亚洲成人有码免费在线| 国产极品高颜值露脸女主播-国产日韩亚洲欧美综合-成人亚洲天堂av在线-日韩在线观看免费不卡| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线| 国产刺激国产精品国产二区-亚洲欧洲日本精品专线-国产精品激情丝袜美女图集-久久精品久久免费懂色| 亚洲熟妇激情视频99-丝袜美腿诱惑av网站在线观看-欧美国产综合激情一区精品-激情综合网激情五月我去也| 欧洲熟女乱色一区二区三区-人妻中文字幕一区二区在线视频-亚洲码欧洲码一区二区三区四区-日本片在线美女视频骚货| 精品国产美女av天堂-狼人av在线免费观看-日韩精品人妻中文字幕有码在线-欧美视频亚洲视频自拍偷拍| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 精品国产日韩一区三区-成人激情毛片免费在线看-国产一区二区高清日韩-日韩成人黄片免费在线观看| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕|