色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Las grietas por fatiga son generalmente el resultado de deformaciones plásticas periódicas en áreas locales. La fatiga se define como "falla bajo carga repetida u otros tipos de condiciones de carga, y este nivel de carga no es suficiente para causar falla cuando se aplica solo una vez". Esta deformación plástica no se produce por la tensión teórica sobre el componente ideal, sino porque la superficie del componente no se puede detectar realmente.

August W?hler es el pionero de la investigación de la fatiga y propone un método empírico. Entre 1852 y 1870, W?hler estudió el deterioro progresivo de los ejes ferroviarios. él construyó el banco de pruebas que se muestra en la Figura 1. Este banco de pruebas permite girar y doblar dos ejes de ferrocarril al mismo tiempo. W?hler trazó la relación entre la tensión nominal y el número de ciclos que conducen a la falla, lo que más tarde se conoce como diagrama SN. Cada curva sigue llamándose línea de w ? hler. El método Sn sigue siendo el método más utilizado en la actualidad. Un ejemplo típico de esta curva se muestra en la Figura 1.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 2
Figura 1 Ensayo de fatiga por flexión rotacional de W?hler

Se pueden observar varios efectos a través de la línea de w?hler. Primero, observamos que la curva SN por debajo del punto de transición (alrededor de 1000 ciclos) no es válida porque el esfuerzo nominal aquí es elastoplástico. Más adelante mostraremos que la fatiga es causada por la liberación de energía de deformación plástica cortante. Por lo tanto, no existe una relación lineal entre la tensión y la deformación antes de la fractura y no se puede utilizar. Entre el punto de transición y el límite de fatiga (alrededor de 107 ciclos), el análisis basado en Sn es válido. Por encima del límite de fatiga, la pendiente de la curva disminuye bruscamente, por lo que esta región a menudo se denomina región de "vida infinita". Pero este no es el caso. Por ejemplo, la aleación de aluminio no tendrá una vida infinita, e incluso el acero no tendrá una vida infinita bajo una carga de amplitud variable.

Con la aparición de la tecnología de amplificación moderna, las personas pueden estudiar las grietas por fatiga con más detalle. Ahora sabemos que la aparición y propagación de grietas por fatiga se puede dividir en dos etapas. En la etapa inicial, la grieta se propaga en un ángulo de unos 45 grados con respecto a la carga aplicada (a lo largo de la línea de esfuerzo cortante máximo). Después de cruzar dos o tres límites de grano, su dirección cambia y se extiende a lo largo de la dirección de unos 90 grados con respecto a la carga aplicada. Estas dos etapas se denominan grieta de etapa I y grieta de etapa II, como se muestra en la Figura 2.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 3
Figura 2 Diagrama esquemático del crecimiento de fisuras en etapa I y etapa II

Si observamos una fisura de etapa I a gran aumento, podemos ver que la tensión alterna conducirá a la formación de una banda de deslizamiento continua a lo largo del plano de corte máximo. Estas bandas deslizantes se deslizan hacia adelante y hacia atrás, como una baraja de cartas, lo que da como resultado superficies irregulares. La superficie cóncava finalmente forma una grieta de "brote", como se muestra en la Figura 3. En la fase I, la grieta se expandirá de este modo hasta que alcance el límite de grano y se detendrá temporalmente. Cuando se aplica suficiente energía a los cristales adyacentes, el proceso continúa.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 4
Figura 3 Diagrama esquemático de banda deslizante continua

Después de cruzar dos o tres límites de grano, la dirección de propagación de grietas ahora entra en el modo de fase II. En esta etapa, las propiedades físicas de la propagación de grietas han cambiado. La fisura en sí misma constituye un macroobstáculo para el flujo de tensiones, provocando una alta concentración de tensiones plásticas en la punta de la fisura. Como se muestra en la Figura 4. Cabe se?alar que no todas las grietas de la etapa I se desarrollarán a la etapa II.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 5
Figura 4

Para comprender el mecanismo de propagación de la etapa II, debemos considerar la situación de la sección transversal de la punta de la grieta durante el ciclo de tensión. Como se muestra en la Figura 5. El ciclo de fatiga comienza cuando el esfuerzo nominal está en el punto “a”. A medida que la intensidad de la tensión aumenta y pasa por el punto "B", notamos que la punta de la fisura se abre, lo que da como resultado una deformación por cortante plástico local, y la fisura se extiende hasta el punto "C" en el metal original. Cuando el esfuerzo de tracción disminuye por el punto “d”, observamos que la punta de la fisura se cierra, pero la deformación plástica permanente deja un único dentado, la llamada “l(fā)ínea de corte”. Cuando todo el ciclo termina en el punto "e", observamos que la fisura ahora ha aumentado la longitud "Da" y ha formado líneas de sección adicionales. Ahora se entiende que el rango de crecimiento de la fisura es proporcional al rango de deformación elástica-plástica aplicada en la punta de la fisura. Un rango de ciclo más grande puede formar un Da más grande.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 6
Fig. 5 Diagrama esquemático de la propagación de grietas en la etapa II

Factores que afectan la tasa de crecimiento de grietas por fatiga

Se estudia y explica conceptualmente la influencia de los siguientes parámetros en la tasa de crecimiento de grietas por fatiga:

1Esfuerzo cortante

En el diagrama, podemos ver que una cierta "cantidad" de esfuerzo cortante se libera durante el cambio periódico de la resistencia del esfuerzo nominal. Y cuanto mayor sea el rango de cambios de estrés, mayor será la energía liberada. A través de la curva SN que se muestra en la Figura 1, podemos ver que la vida a fatiga disminuye exponencialmente con el aumento del rango del ciclo de estrés.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 7
Fig. 6 tensión y deformación elastoplástica a lo largo de la superficie de deslizamiento y en la raíz de la fisura

2 tensión media

El estrés promedio (esfuerzo residual) también es un factor que afecta la tasa de falla por fatiga. Conceptualmente, si la tensión de expansión se aplica a la fisura de fase II, la fisura se verá forzada a abrirse, por lo que cualquier ciclo de tensión tendrá un efecto más significativo. Por el contrario, si se aplica el esfuerzo de compresión promedio, la fisura se verá forzada a cerrarse y cualquier ciclo de tensión debe superar el esfuerzo de precompresión antes de que la fisura pueda continuar expandiéndose. Conceptos similares también se aplican a las grietas de etapa I.

3 acabado superficial

Debido a que las grietas por fatiga generalmente aparecen primero en la superficie de los componentes donde hay defectos, la calidad de la superficie afectará seriamente la probabilidad de que ocurran grietas. Aunque la mayoría de las muestras de prueba de materiales tienen un acabado de espejo, también lograrán la mejor vida útil a la fatiga. De hecho, la mayoría de los componentes no se pueden comparar con las muestras, por lo que debemos modificar las propiedades de fatiga. El acabado superficial tiene un mayor efecto sobre la fatiga de los componentes sometidos a ciclos de tensión de baja amplitud.

Experimento estático de August W?hler que muestra cómo los 4 elementos impactan en la grieta por fatiga 8
Figura 7 Diagrama esquemático de la influencia de la secuencia del ciclo La influencia del acabado superficial se puede expresar modelando, es decir, multiplicando la curva SN por el parámetro de corrección superficial en el límite de fatiga.

4 tratamiento de superficie

El tratamiento de superficie se puede utilizar para mejorar la resistencia a la fatiga de los componentes. El propósito del tratamiento superficial es formar esfuerzos de compresión residuales en la superficie. Bajo el período de baja amplitud, la tensión en la superficie es obviamente baja e incluso mantiene el estado de compresión. Por lo tanto, la vida de fatiga puede prolongarse significativamente. Sin embargo, como se?alamos, esta situación solo es válida para componentes sujetos a ciclos de tensión de baja amplitud. Si se aplica un período de amplitud alta, la compresión previa será superada por el período de amplitud alta y se perderán sus ventajas. Al igual que con la calidad de la superficie, el impacto del tratamiento de la superficie se puede mostrar mediante modelos.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

青青青视频蜜桃一区二区-粗大挺进人妻中文字幕-国产小视频在线看不卡-国产精品一区免费在线观看| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 91免费视频国产自拍-亚洲av 综合一区二区人妖-青青草草青青在线播放-欧美精品免费一区二区二区| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 免费观看国产裸体视频-久久亚洲精精品中文字幕早川悠里-99精品国产一区二区青青牛奶-久久精品成人av免费观看| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 国产精品一区二区三区四区-日本毛茸茸的丰满熟妇-中文字幕久久中文字幕久久-国产成人三级一区二区在线观看| 国产精品毛片二区视频播-尤物视频在线看免费观看-亚洲中文字幕亚洲中文字幕-日本黄色成人福利网站| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 久久精品极品盛宴免视-五月综合激情中文字幕-精品中文字幕一区二区精彩-中文字幕熟女日韩人妻| 主播高颜值极品尤物极品-精品少妇人妻av免费看-精品国产免费一区二区久久-成人国产av精品入口在线| 国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 偷拍一区二区三区视频播放器-亚洲欧洲日产韩国综合-国产精品久久精品亚洲-国产乱淫av麻豆国产| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 亚洲黄色精品在线播放-国产精品对白在线播放-日韩熟女熟妇久久精品综合-人妻人妻少妇在线系列| 午夜av毛片在线观看-青草精品视频在线观看-亚洲av中文字字幕乱码综合-午夜av一区二区三区中文字幕| 日韩熟女人妻中文字幕-亚洲视频自拍偷拍免费-91国内精品久久精品一本-日韩高清一区二区不卡视频| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| a在线观看视频在线播放-81精品人妻一区二区三区蜜桃-国产午夜福利片一级做-在线观看亚洲视频一区二区| 一区二区三区岛国av毛片-国产男女无遮挡猛进猛-久久精品人妻丝袜乱一区二区三区-国产超级对对碰在线观看| 日本一区二区三区四区在线-黄色激情免费看国产看片-微拍福利一区二区视频-日本高清免费不卡观看| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 91偷自产一区二区三区精品-亚洲av一区二区三区中文-国产一级黄色性生活片-最近中文字幕在线一区二区三区| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线|