色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Carbides contain mainly two types of additives: one is refractory metal carbides, and the other is metal additives. The functions of additives are as follows:

(1) To reduce the alloy’s sensitivity to sintering temperature fluctuations and carbon content changes, and to prevent the uneven growth of carbide grains;

(2) To change the phase composition of the alloy, thereby improving the structure and properties of the alloy.

This paper reviews the effects of adding rare earth elements, metals, and metal carbides to cemented carbides on their properties.

The Effect of Additives on the Properties of Cemented Carbides 2

The Effect of Adding Rare Earth Elements on Carbide Properties

Rare earth elements are the 15 lanthanide elements with atomic numbers ranging from 57 to 71 in the third subgroup of the Mendeleev periodic table, plus scandium and yttrium, which have similar electronic structures and chemical properties, totaling 17 elements. Rare earths are known as the “treasure trove” of new materials and are a group of elements of particular concern to scientists worldwide, especially material experts. The following sections discuss the effects of adding rare earth elements on the hardness, bending strength, and grain size of cemented carbides.

1.1 Hardness

Whether the addition of rare earths has a significant effect on the hardness of the alloy is an issue of concern. The influence of yttrium and lanthanum on WC-TiC-Co cemented carbides is not significant, but different rare earth elements have different trends; however, the hardness of alloys with Nd or Ce added, regardless of the content, is slightly higher than that of the untreated alloys, with an average increase of 0.3 HRA units. For YG6 alloys, the addition of mixed rare earths results in a decrease in hardness to varying degrees when the content reaches 1%; for YT? alloys, the hardness remains largely unchanged or slightly increased with the addition of La or Y.

1.2 Bending Strength

Data shows that adding a certain amount of rare earth elements to the alloy can increase its bending strength. After the addition of rare earth oxides, the strength of the alloy is improved due to the dispersion strengthening of nickel by the rare earth oxides. When the content of rare earths is 1.2% to 1.6% of the binder metal content, the bending strength of the alloy reaches its maximum value; after adding mixed rare earth oxides equivalent to 0.25% to 1.00% of the binder mass fraction, the bending strength of the WC-8%Co alloy is improved to some extent. When the addition amount is 0.25% to 0.50%, the bending strength can be increased by 1.5%, but excessive addition of rare earths will lead to a decrease in bending strength.

The Effect of Additives on the Properties of Cemented Carbides 3

1.3 Grain Size of Carbides

A large number of literature reports have been published on the effect of rare earths on the WC grain size in cemented carbides, but there is no unified conclusion to date. Regardless of the type of rare earth element added, the carbide grains in the alloy are finer than those without additives, and as the amount added increases, the refinement becomes more pronounced, and the grain size of the rare earth element-added alloy appears more uniform than that of the untreated alloy; studies have shown that the addition of trace rare earth elements does not affect the particle size of tungsten carbide and the binder phase.

Through extensive observation of the WC grain size and microstructure of WC-Co-TiC-TaC with rare earths and WC-Co with rare earths alloys, it is believed that the effect of rare earths on the WC grain size of cemented carbides is determined by two refinement effects and one growth effect. Table 1 shows the comparison of properties between rare earth alloys and alloys without rare earths.

The Effect of Additives on the Properties of Cemented Carbides 4

 

2 The Effect of Adding Metals on the Properties of Cemented Carbides

Commonly used metal additives include chromium, molybdenum, tungsten, tantalum, niobium, copper, aluminum, and others. Except for copper and aluminum, all of these can form carbides. Therefore, the change in the carbon content of the alloy must be considered when adding these metals.

2.1 Adding Noble Metals

Sintered cemented carbide products with added noble metals such as Ru, Rh, Pd, and Re exhibit high wear resistance and corrosion resistance and can be used in corrosive and abrasive media. Noble metals do not form carbide phases and exist in the binder metal as solid solutions. Ru and Re cause the formation of a substructure in the binder phase of the cemented carbide. Alloying sintered cemented carbides with noble metals can increase the microhardness and elastic modulus of the binder phase, while also improving the bending strength, compressive strength limit, and yield point of the sintered cemented carbide as a whole.

2.2 Adding Copper

The addition of a small amount of copper to alloys used in mining can both increase the strength of the alloy and improve its impact toughness. Research results indicate that after adding a small amount of copper to the WC-13% Fe/Co/Ni alloy, the hardness of the alloy slightly decreases, but the bending strength is significantly improved. When the copper content is around 0.8%, the alloy exhibits the best performance. Moreover, copper also has the effect of refining and spheroidizing WC grains.

2.3 Adding Alkali Metals

Alkali metals can promote the growth of ba?o grains, but their effect is limited by other factors. For instance, in the presence of silicon, sodium actually refines the WC grains; whereas if sodium is present during the carbonization process, the WC grains will become finer. Adding industrial-grade Li?CO? with a purity of 98% to 99% to the alloy results in a cemented carbide with coarser average grains, clear and well-defined grain edges, and high bending strength.

2.4 Adding Aluminum

The effect of adding a small amount of Al on the properties and structure of the WC-13% Fe/Co/Ni cemented carbide shows that the addition of a small amount of aluminum can refine the WC grains. While the hardness of the alloy increases by 2 to 3 HRA, the bending strength of the alloy can be improved by 100 to 200 MPa. When the amount of Al added exceeds 0.8%, the bending strength of the alloy decreases, which is due to reasons such as the enrichment of martensite at the phase interface and the relative change in the amount of γ phase. Table 2 shows the effect of metal additives on the properties of the alloy.

carbides

 

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

午夜中文字幕一区二区三区-亚洲精品av在线免费观看-蜜臀av一区二区三区久久bu-五月激情综合在线视频| 国产一级亚洲一级一区-国产精品一亚洲av日韩av-日韩高清有码中文字幕-久久国产精品免费一区二区三区| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 极品尤物高颜值女神露脸-免费视频一区二区三区美女-麻豆av国语对白麻豆-亚洲精品国产午夜精品| 办公室女厕偷拍美女撒尿-日本成人看片一区二区在线-丰满熟女少妇午夜福利-少妇被爽到高潮在线观看| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 九九在线国产精品自拍-亚洲综合精品中文字幕-亚州国产成人综合精品-人妻少妇久久精品中文| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 蜜桃在线观看免费网站-亚洲成熟女性一级黄色蝶片-日韩一级黄色片天天看-一区二区三区在线视频观看美女| 欧洲亚洲高清另类清纯-国产av一区二区三区av-亚洲精品一区二区三区午夜-国产夫妻自拍3p视频在线| 亚洲欧美日本成人在线-伦理视频在线观看一区二区三区-日韩精品中文字幕人妻-四虎永久地址在线观看| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 性感红唇美女扒内裤视频网站-国产精品日本一区二区三区在线-久久99午夜福利视频-国产高清露脸自拍视频在线播放| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 中文字幕在线永在少妇-97免费公开在线视频-国产三级自拍视频在线播放-黄色aaa三级三级三级| av天堂一区二区三区在线观看-一区二区三区在线观看蜜桃-激情在线免费观看国产视频-国产精品国产三级国产三不| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 亚洲天堂av中文在线-亚洲精品有码中文字幕网络-在线播放国产一区二区不卡-香港毛片免费观看视频| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 亚洲自拍偷拍另类第一页-麻豆国产午夜在线精品-久久精品一区二区三区综合-日本最近中文字幕免费| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 美女脱内衣内裤露出咪咪-美女一区二区三区免费观看-国产网红女主播在线视频-久久亚洲春色中文字幕| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 久久国产精品一品二品-国产二区中文字幕在线观看-极品性感尤物少妇粉嫩逼-亚洲成人av男人的天堂网| 国产性色av综合亚洲不卡-中文字幕一区二区在线资源-久久四十路五十路六十路-91九色在线观看免费| 成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 亚洲视频在线观看第一页-精品偷拍另类欧美日韩-日韩高清在线一区二区三区-久久天天操狠狠操夜夜av| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久|