色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Non-magnetic carbide is a material without magnetic properties or with weak magnetic properties. Non-magnetic carbide is a newly developed type of carbide material with excellent performance and practicality. It is mainly produced using powder metallurgy methods, and then formed through high-temperature vacuum sintering. It is a carbide material without magnetic properties or with weak magnetic properties. It does not contain components that generate magnetism, such as iron, nickel, silicon oxide, etc.

Characteristics of non-magnetic carbide

Because non-magnetic carbide?is produced in high-temperature and high-pressure environments, it possesses excellent characteristics of high flexural strength and high hardness. If this type of carbide?is used as a material for molds, its service life can be several tens of times longer than that of ordinary molds, and its service life is very long. Furthermore, it can ensure that no burrs or powder sticking phenomena occur during the pressing process, guaranteeing both processing accuracy and surface quality. The subsequent machining results are also guaranteed.

 

Preparation methods of non-magnetic carbideWhat is non-magnetic carbide? 1

The research and production of non-magnetic?carbide?materials represent a significant advancement in new types of?carbide?materials. Hard alloys are composed of refractory metal carbides from Groups IV A, V A, and VI A of the periodic table (such as tungsten carbide, WC), with iron-group transition metals (cobalt, Co; nickel, Ni; iron, Fe) as the binder phase, and are sintered using powder metallurgy techniques. Tungsten carbides mentioned above are non-magnetic, while Fe, Co, and Ni are magnetic, with Curie points of 770°C, 1120°C, and 354°C, respectively. Among them, the Curie point of Ni (nickel) is relatively low and can be lowered below room temperature using certain methods. Using Ni as a binder is an essential condition for producing non-magnetic alloys.

There are the following methods to obtain WC-Ni series non-magnetic hard alloy:

Strictly controlling the carbon content

WC-Ni alloys, like WC-Co alloys, are influenced by carbon content, which is the main factor affecting the solid solubility of W in the binder phase. In other words, the lower the carbon content in the carbide phase of the alloy, the greater the solid solubility of W in the Ni binder phase. This variation ranges from about 10% to 31%. When the solid solubility of W in the Ni binder phase exceeds 17%, the alloy becomes non-magnetic. The essence of this method lies in lowering the carbon content and increasing the solid solubility of W in the binder phase to achieve a non-magnetic hard alloy.

In practice, WC powder with a carbon content lower than the theoretical carbon content is often used, or W powder is added to the mixture to achieve the production of low-carbon alloys. However, it is quite challenging to solely rely on controlling the carbon content to produce non-magnetic alloys.

What is non-magnetic carbide? 2

Adding chromium (Cr), molybdenum (Mo), and tantalum (Ta)

High-carbon WC-10%Ni (wt% weight percentage) alloy exhibits ferromagnetic properties at room temperature. If more than 0.5% of Cr or Mo and more than 1% of Ta in metallic form are added, the high-carbon alloy can transition from ferromagnetic to non-magnetic. Adding Cr results in an alloy’s magnetism being independent of carbon content, similar to how Cr is significantly solubilized in the alloy’s binder phase as W is. On the other hand, alloys with added Mo or Ta can only transform into non-magnetic alloys under certain carbon content.

Since the solubility of Mo and Ta in the binder phase is relatively low, most of them extract carbon from WC to form corresponding carbides or solid solutions of carbides. As a result, the alloy composition shifts towards the low-carbon side, causing an increase in the solid solubility of W in the binder phase. In other words, the method of adding Mo or Ta is essentially achieved by lowering the carbon content to obtain a non-magnetic alloy. Although it’s not as easily controlled as adding Cr, this method is relatively easier to control in terms of carbon content compared to pure WC-10%Ni alloy, widening the carbon content range from 5.8-5.95% to 5.8-6.05%.

Adding NiB or Al.

Using NiB (nickel boride) with a boron content of 1-8% as the binder phase, and WC, TiC (titanium carbide), TaC (tantalum carbide), etc., as the hard phase, this alloy is produced through vacuum sintering at temperatures between 1300°C and 1450°C. When the boron content in the binder phase exceeds 8%, the flexural strength noticeably decreases.

The reason this alloy achieves non-magnetic properties is inferred to be either due to boron’s solubility in the binder phase causing a reduction in the alloy’s Curie point or because boron reacts with WC to generate new hard phases, resulting in the alloy becoming a low-carbon alloy.

In the WC-Ni alloy system, adding Al is also a method to achieve non-magnetic properties. For instance, an alloy with the composition of WC-0.75%Al-14.25%Ni displays weak magnetism at room temperature, with a flexural strength of 1670 MPa and a hardness of 87.4 HRA.

Among the production and preparation methods for non-magnetic alloys, the second method has been practically applied due to challenges in controlling the first method’s processes, and the third method hasn’t been industrialized due to its inferior performance.

VC addition method

Vanadium (V) is the most effective element in reducing the Curie point of nickel. Vanadium carbide (VC) is the most effective grain growth inhibitor in hard alloys, and increasing the content of vanadium carbide (VC) is a novel method for producing non-magnetic hard alloys.

Comparing the magnetic permeability of samples with a certain amount of added VC (reaching a specific null level) with the magnetic permeability of existing domestic non-magneticcarbideproducts, there is a noticeable decrease. It is also much lower than the magnetic permeability of non-magnetic steel. VC is limited in solid solubility within Ni, and excessive addition can lead to the precipitation of VC. From the perspective of producing non-magnetic alloys, a VC addition of 0.1-0.2% is sufficient to meet the requirements.

Adding 1% Cr3C2 to WC-10%Ni alloy also yields a non-magnetic alloy. However, in terms of magnetic permeability and temperature proximity (-6°C), the addition of Cr3C2 is relatively large and its non-magnetic effect is not as effective as adding VC.

 

Types of non-magnetic?carbide?products

Here are some products and applications that can be made using non-magnetic carbide:

Electronic device components

Due to its low magnetic properties, non-magnetic carbide?can be used to manufacture components in electronic devices, such as electronic magnetic induction elements, transformers, inductors, etc. This helps to prevent magnetic fields from interfering with the performance of the devices.

Medical instruments

In certain medical devices, non-magnetic carbide?can be used to manufacture certain components to prevent induction of magnetic fields in the equipment, ensuring the proper functioning of the devices.

Aerospace field

In the aerospace industry, non-magnetic carbide?can be utilized to manufacture sensitive instruments, equipment, and tools to prevent magnetic field interference with navigation and measurement systems.

Precision instruments

Non-magnetic carbide?also finds applications in manufacturing precision instruments, instruments, optical equipment, and the like, as magnetism can affect the accurate measurement and operation of these devices.

Nuclear industry

In the nuclear industry, non-magnetic carbide?can be used for certain nuclear magnetic resonance (NMR) equipment and other nuclear magnetic applications to avoid the influence of external magnetic fields.

Formenbau

With the booming development of the magneto-electric industry, the demand for non-magnetic?carbide?molds is increasing, and the size of non-magnetic?carbide?molds is also growing. It’s well-known that under existing production process conditions, manufacturing small-volume WC-Ni alloy products is not a difficult task. However, producing large-volume (over 10 kg in mass) WC-Ni alloy mold materials that are completely non-magnetic and possess excellent mechanical properties is a challenging endeavor.

Based on practical experience, there are three main difficulties:

1Due to the large size, achieving uniform and consistent carbon content throughout the mold material is challenging. This is especially true for production processes that use rubber as a binder, where disparities are more pronounced. The most typical issue is that the surface exhibits normal properties while the interior suffers from carburization.

2The narrow carbon range required for the two-phase alloy with non-magnetic properties makes carbon control extremely difficult in actual production.

3The technical difficulty of preventing cracking during the debinding and sintering processes of large-volume products is high. Therefore, research on non-magnetic?carbide?molds is still in development.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

国产亚洲成人精品久久久-亚洲免费av高清在线观看-在线观看国内自拍视频-亚洲国产成人精品综合色| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 99在线精品偷拍视频-国产精品粉嫩在线播放-国产精品极品在线91-中文字幕有码在线亚洲| 五月婷婷丁香免费视频-四虎永久免费观看在线-一品道亚洲欧美日韩精品-日韩一级黄色片在线播放| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频| 日本黄网站三级三级三级-91网址免费在线观看-肥老熟女性强欲五十路-无套内谢少妇高朝毛片| 青青草原av青青草原-美日韩精品一区二区三区-中文字幕日本乱码在线-久久热久久热在线视频| 69精品人妻一区二区三区蜜桃久-国产粉嫩清纯美女在线观看-国产成人高清视频免费-国产日韩精品一区二区三区四区| 亚洲中文字幕中出在线-美女口爆吞精在线播放-亚洲欧美清纯唯美另类-国产一区二区三区免费观看不卡| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 亚洲成人大片免费观看-国产精品一区二区不卡91-国产卡一卡二在线免费看-动漫美女视频在线看黄| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 国产四虎视频在线观看-日本一区二区三区暖暖视频免费-91人妻人人澡人人添人人爽-在线日本高清日本免费| 四只虎视频大全免费观看-日本黄色激情免费网站-免费岛国大片在线播放-国产午夜福利在现观看| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 亚洲午夜福利在线看片-草草影院在线观看国产-中文字幕在线国产有码-精品99成人午夜在线| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 日本午夜av免费久久观看-国产精品夜色一区二区三区不卡-亚洲高清自有码中文字-青青草国产成人在线观看| 欧美日韩在线有码中文-亚洲美女一区二区暴力深喉吞精-亚洲av日韩一区二区三区-国产激情视频在线观看播放| 亚洲精品成人久久av中文字幕-中文av毛片在线观看-一本之道加勒比在线视频-日韩av一区二区在线观看不卡| 天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 国产精品免费av一区二区-91在线日本在线观看-免费在线激情视频网址-亚洲午夜福利影院在线免费观看| 少妇被无套内谢免费视频看看-不卡中文在线观看网站-国产精品男女爽免费视频-91精品福利视频久久| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 91精品18国产在线观看-午夜福利原创精品视频-欧美日韩在线亚洲另类-欧美日韩亚洲国产综合在线| 国产特黄特色特级黄大真人片-综合激情五月三开心五月-欧美日韩不卡视频合集-成熟的妇人亚洲性视频| 四虎永久在线高清国产精品-一区二区三区日本精品视频-国产午夜福利精品久久不卡-一区二区三区国产亚洲自拍| 日韩一卡二卡在线播放-亚洲国产精品懂色av-青青热久免费精品视频在-久久精品中文字幕一区二区三区| 四十如虎的丰满熟妇啪啪-国产三级电影在线免费看-国产综合色香蕉精品五夜婷-免费观看日韩三级视频| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 欧洲人妻中文字幕在线-白白色永久免费视频播放-精品日韩免费在线视频-风间由美性色一区二区三区| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 一区二区三区国产精品女人-日本成人在线视频91-国产午夜福利在线剧场-欧美日韩激情系列在线观看| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女|