色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The systematic mechanical related deviation of machine tool can be recorded by the system, but due to environmental factors such as temperature or mechanical load, the deviation may still appear or increase in the subsequent use process. In these cases, SINUMERIK can provide different compensation functions. The deviation is compensated by using the measured value obtained by the actual position encoder (such as grating) or additional sensor (such as laser interferometer, etc.), so as to obtain better machining effect.

What Do You Know about Compensations in CNC Lathe Machining 2

The transmission of force between the moving parts of the machine tool and its driving parts, such as the ball screw, will produce discontinuity or delay, because the mechanical structure without clearance will significantly increase the wear of the machine tool, and it is also difficult to realize in terms of technology. The mechanical clearance causes a deviation between the movement path of the shaft / spindle and the measured value of the indirect measurement system. This means that once the direction changes, the axis will move too far or too close, depending on the size of the gap. The worktable and its associated encoder will also be affected: if the encoder position is ahead of the worktable, it reaches the command position ahead of time, which means that the actual moving distance of the machine tool is shortened. In the operation of the machine tool, by using the reverse clearance compensation function on the corresponding axis, the previously recorded deviation will be automatically activated when reversing, and the previously recorded deviation will be superimposed on the actual position value.

Screw pitch error compensation

What Do You Know about Compensations in CNC Lathe Machining 3

The measurement principle of indirect measurement in CNC control system is based on the assumption that the pitch of ball screw remains unchanged in the effective stroke, so in theory, the actual position of the linear axis can be deduced according to the motion information position of the driving motor. However, the manufacturing error of the ball screw will lead to the deviation of the measurement system (also known as the screw pitch error). The measurement deviation (depending on the measurement system used) and the installation error of the measurement system on the machine tool (also known as the measurement system error) may further aggravate this problem. In order to compensate these two kinds of errors, a set of independent measurement system (laser measurement) can be used to measure the natural error curve of CNC machine tools, and then the required compensation values are saved in the CNC system for compensation.

Friction compensation (quadrant error compensation) and dynamic friction compensation

What Do You Know about Compensations in CNC Lathe Machining 4

Quadrant error compensation (also known as friction compensation) is suitable for all the above situations, so as to greatly improve the contour accuracy when machining circular contour. The reason is as follows: in quadrant conversion, one axis moves at the highest feed speed, and the other axis is stationary. Therefore, the different friction behavior of two axes may lead to contour error. Quadrant error compensation can effectively reduce this error and ensure excellent machining effect. The density of compensation pulse can be set according to the characteristic curve related to acceleration, which can be determined and parameterized by roundness test. In the roundness test, the deviation between the actual position of the circular contour and the programmed radius (especially when reversing) is recorded quantitatively, and displayed on the human-machine interface through graphics.

In the new version of the system software, the integrated dynamic friction compensation function can dynamically compensate the friction behavior under different rotating speeds of the machine tool, reduce the actual machining profile error, and achieve higher control accuracy.

Sag and angle error compensation

What Do You Know about Compensations in CNC Lathe Machining 5

If the weight of the individual parts of each machine tool will cause displacement and inclination of the moving parts, sag compensation is required because it will cause sagging of the relevant machine parts (including the guide system). Angle error compensation is used when the moving axes are not aligned with each other at the correct angle (for example, vertical). With the increase of the offset of the zero point position, the position error also increases. Both of these errors are caused by the weight of the machine tool, or by the weight of the tool and the workpiece. After the measured compensation value is quantified during debugging, it is stored in SINUMERIK according to the corresponding position in some form, such as compensation table. When the machine is running, the position of the relevant axis is interpolated according to the compensation value of the storage point. For each successive path movement, there are basic axis and compensation axis.

temperature compensation

Heat can cause expansion of various parts of the machine. The expansion range depends on the temperature and thermal conductivity of each machine part. Different temperature may cause the actual position of each axis to change, which will have a negative impact on the accuracy of the workpiece in processing. These changes in actual values can be offset by temperature compensation. The error curves of each axis at different temperatures can be defined. In order to compensate the thermal expansion correctly all the time, the temperature compensation value, reference position and linear gradient angle parameter must be transferred from PLC to CNC control system through function block. The change of unexpected parameters will be automatically eliminated by the control system, so as to avoid overloading the machine and activate the monitoring function.

Space error compensation system (VCS)

What Do You Know about Compensations in CNC Lathe Machining 6

The position of the rotating shaft, their mutual compensation and the orientation error of the tool may lead to systematic geometric errors of the rotating head, the rotating head and other components. In addition, there will be small errors in the guide system of the feed shaft in each machine tool. For linear axis, these errors are linear position errors, horizontal and vertical straightness errors, and for rotation axis, pitch angle, yaw angle and roll angle errors will be generated. Other errors may occur when the machine components are aligned with each other. For example, vertical error. In a three-axis machine tool, this means that 21 geometric errors may occur on the tool tip: Six error types per linear axis multiplied by three axes, plus three angular errors. These deviations together form the total error, also known as the spatial error.

The space error describes the deviation between the tool midpoint (TCP) position of the actual machine tool and that of the ideal error free machine tool. SINUMERIK solution partners are able to determine spatial errors with the help of laser measurement equipment. It is not enough to measure only the error of a single position. It is necessary to measure all the machine errors in the whole machining space. Generally, it is necessary to record the measured values of all positions and draw a curve, because the size of each error depends on the position of the relevant feed axis and the measured position. For example, when the Y-axis and z-axis are in different positions, the deviation caused by the x-axis will be different – even in almost the same position of the x-axis. With the help of “cycle996 – motion measurement”, it takes only a few minutes to determine the axis of rotation error. This means that the accuracy of the machine tool can be constantly checked and, if necessary, corrected even in production.

Deviation compensation (dynamic feedforward control)

Was wissen Sie über Kompensationen in der CNC-Drehmaschinenbearbeitung? 7

Deviation refers to the deviation between the position controller and the standard when the machine tool axis moves. The axis deviation is the difference between the target position of the machine axis and its actual position. The deviation leads to unnecessary contour errors related to velocity, especially when the curvature of contour changes, such as circle, square contour, etc. With the help of the NC high level language command ffwon in the part program, the speed related deviation can be reduced to zero when moving along the path. The feed-forward control is used to improve the path precision, so as to obtain better machining effect.

Electronic counterweight compensation

In extreme cases, the electronic counterweight function can be activated in order to prevent the shaft from sagging and causing damage to the machine, tool or workpiece. In a load shaft without a mechanical or hydraulic counterweight, the vertical shaft will sag unexpectedly once the brake is released. When the electronic counterweight is activated, it can compensate for unexpected shaft sagging. After the brake is released, the position of the droop shaft is maintained by a constant balance torque.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 欧美激情一级欧美精品-国产一区二区在线免费视频观看-日韩不卡视频免费在线观看-国产成人深夜在线观看| 国产精品自在线拍国产-久久精品韩国日韩精品-久久夜色国产精品亚洲av蜜桃-日韩精品一区二区三区四区免费| 深夜福利导航在线观看-情色视频在线观看一区二区三区-丝袜美腿诱惑福利视频-国产最新福利一区二区三区蜜桃| 欧美成人国产精品137片内射-空之色水之色 在线观看-精品国产亚洲一区二区在线观看-色婷婷精品午夜在线播放| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 成人精品一区二区三区久久-中文字幕乱码亚洲无线三区-亚洲精品亚洲人成人网-中文字幕五月久久婷热| 午夜福利网午夜福利网-国产粉嫩学生在线观看-亚洲精品成人高清在线观看-亚洲人成人日韩中文字幕| 欧美国产日本韩国一区二区-麻豆天美东精91厂制片-亚洲成人自拍视频在线观看-娇妻互换享受高潮91九色| 国产精品免费av一区二区-91在线日本在线观看-免费在线激情视频网址-亚洲午夜福利影院在线免费观看| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区| 国产精品自拍射精视频-蜜桃视频在线中文字幕-黑人泄欲一区二区三区-国内少妇无套内射精品视频| 四虎av免费在线播放-久久精品国产熟女亚洲-日韩美女黄色录像播放-久久亚洲日本熟女精品视频| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 精品国产欧美日韩电影-久久国产视频这里只有精品-深夜免费在线观看福利-久久久国产99精品视频| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 欧美极品欧美精品欧美激情-人妻av中文字幕高清版-国产传媒麻豆天美在线观看-免费91麻豆精品国产自产自线| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 免费人成视频在线观看播放网站-日韩精品久久精品三级-91精品一区二区三区久久蜜桃-中文字幕av久久激情亚洲精品| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 人妻少妇中出中文字幕-久久国内精品一国内精品-中文字幕av一区二区三区蜜桃-日韩一区二区三区精品视频在线观看| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 超碰国产传媒在线观看-av在线免费观看蜜臀-亚洲欧美国产一区二区综合-人妻久久精品夜夜爽一区二区| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 中文字幕久久精品一区二区三区-99国产麻豆精品人人爱-91麻豆精品福利视频-国产精品亚洲一区中文字幕| 亚洲香蕉久久一区二区三区四区-国产夫妻内射一级一片-成人午夜福利片免费观看-一区二区三区四区黄色网| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 亚洲av成人午夜福利在线观看-日韩精品成人影院久久久-国产在线高清不卡一区-激情五月另类综合视频| 在线视频自拍第九十七页-亚洲岛国精品视频在线观看-亚洲av日韩一区在线观看-日韩精品中文一区二区三区| 起碰在线视频免费播放-人妻在线视频一区二区三区-日韩伦理在线一区二区三区-久久女厕视频偷拍一区二区| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码| 国产传媒高清视频在线-日韩人妻少妇av在线-日本久久精品高清视频-丰满肥臀大屁股熟妇激情| 日本一区二区免费电影院-亚洲精品成人av观看-国产级一片内射视步页-日韩高清在线亚洲专区视频| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干|