色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Coarse Tungsten Carbide (WC) is a fundamental raw material for producing coarse WC-Co alloys. The classic method for producing this tungsten carbide involves high-temperature reduction of tungsten oxide and high-temperature carburization. The Fischer particle size of tungsten carbide ranges from about 10 μm to over 20 μm. The coarser the particles, the higher the manufacturing cost. Choosing high-quality and cost-effective raw powder is an important consideration for many alloy and tool manufacturers. This study selects tungsten carbide powders with significantly different particle sizes and investigates the relationship between the characterization parameters of these powders and the grain size of the alloy. The aim is to provide insights that could help reduce energy and material consumption in the manufacture of coarse-grained alloys.

 

Experimental Methods

Raw Materials

The experiment uses coarse and extra-coarse WC powders from well-known suppliers, with their main characteristics shown in Table 1. Additionally, 2.0 μm cobalt powder from the same supplier was also used.

particle size

Experimental Methods

For the preparation of WC-10%Co (where all content is given in weight percentage), weigh 900 g of WC, 100 g of Co, and 20 g of PEG. Measure 235 mL of alcohol and 2000 g of grinding balls. Add these into a 2.4 L ball mill. The mill is operated at a speed of 63 r/min for 14.5 hours. After milling, the mixture is dried, sieved, and then pressed into samples weighing 10 g each. The samples are sintered in a continuous vacuum sintering furnace at 1450°C.

Particle Size Measurement

For coarse tungsten carbide, measure the Fischer particle size in both the as-supplied and milled states. The samples are resin-mounted and analyzed using a metallurgical microscope to determine the grain size and particle size distribution of the powder. The alloy grain size and particle size distribution are measured using classic metallographic methods, and the coercive force of the samples is also assessed.

 

 

Results and Analysis

Fischer Particle Size (Fsss) and Alloy Grain Size

As-Supplied Particle Size and Alloy Grain Size

The metallographic images of alloys made from WC powders #1 and #2 are shown in Figures 1 and 2, respectively. Comparing Figures 1 and 2, it can be observed that the WC grain size in Figure 2 appears to be slightly coarser than in Figure 1. This indicates that coarser as-supplied Fsss particle sizes of WC lead to coarser grain sizes in the WC-Co alloys. Metallographic analysis shows that the average WC grain sizes for alloys made from powders #1 and #2 are 4.8 μm and 5.8 μm, respectively. Thus, the average grain size of WC in sample #2 is 1.2 times that in sample #1. The as-supplied Fsss particle size of #2 WC powder is 2.5 times that of #1 WC powder. Clearly, there is no direct proportional relationship between the as-supplied Fsss particle size of WC powder and the alloy grain size. Additionally, the Fsss particle size values for #1 WC powder are 2.5 times the alloy grain size, and for #2 WC powder, it is 5.3 times the alloy grain size. This indicates that the as-supplied WC powders for both samples are primarily aggregated polycrystalline WC particles, with more severe agglomeration for coarser WC powders.

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 2

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 3

Milled Particle Size and Alloy Grain Size

Comparing Table 1 with the metallographic grain sizes in Figures 1 and 2, it can be seen that the Fsss particle sizes of milled WC powders #1 and #2 are relatively close to the alloy grain sizes. Moreover, the measured alloy grain sizes are higher than the milled Fsss particle size values. This discrepancy is due to differences in measurement principles as well as grain growth during the sintering process. However, it clearly indicates that the Fsss particle sizes of coarse WC powders in the milled state are very close to the alloy grain sizes. The ratios of average grain sizes to milled particle sizes for alloys #1 and #2 are 1.15 and 1.31, respectively.

Raw Material WC Grain Size and Alloy Grain Size

Results from Direct Metallographic Measurement

Metallographic images of #1 and #2 WC powders after mounting and etching are shown in Figures 3 and 4. The grain sizes measured using metallographic methods are 5.31 μm and 8.5 μm, respectively. The grain size distributions of the powders and alloys are shown in Figures 5 and 6.

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 4 ?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 5

Figures 3 and 4 clearly indicate that the grain size of #2 WC is significantly larger than that of #1 WC. This suggests that WC with a coarser as-supplied Fischer particle size also has coarser grains. Additionally, it is evident that #1 WC exhibits better dispersion, with less pronounced sintering between particles compared to #2 WC. The severe sintering in #2 WC particles is a major reason why the metallographic grain size is much larger than the alloy grain size, and also explains why the grains in #2 WC are much larger than those in #1 WC.

From the grain size distribution of the raw powders and alloys in Figures 5 and 6, it can be seen that sample #1 contains coarse WC grains of 15–20 μm in the raw material, which are not present in the alloy. In contrast, sample #2 has a substantial amount of WC grains in the 15–35 μm range, though only a small amount of 15–20 μm grains are found in the alloy. This suggests that the severe sintering of the mounted WC, although difficult to distinguish by metallographic methods after etching, was fragmented during the intense grinding process.

Moreover, comparing the WC and alloy grain size distributions in Figures 5 and 6 shows that the grain size distribution of WC in sample #1 is more consistent with the alloy grain distribution than in sample #2. This consistency is a significant reason why many researchers believe that WC similar to sample #1 is more conducive to producing coarse alloys with a more uniform grain size.

WC Particle Size and Alloy Coercive Force

The coercive forces of the alloys made from #1 and #2 powders are 4.6 kA/m and 4.3 kA/m, respectively. The relationship between the WC-Co alloy grain size and the alloy’s coercive force can be expressed using the empirical formula (1).

?The 3 Impact of Coarse Tungsten Carbide Particle Size on WC-Co Alloy Grain Size 6

In the formula:

  • Hc= coercive force of the alloy (kA/m)
  • Com= cobalt content in the alloy (%)
  • Dwc= average WC grain size in the alloy (μm)

 

According to the calculations, the average grain sizes of alloys #1 and #2 are 7.4 μm and 8.8 μm, respectively. Clearly, the calculated grain sizes are significantly larger than the measured grain sizes, but the difference between the average grain sizes of alloys #2 and #1 is close to the difference observed using metallographic methods. The results obtained from formula (1) do not show a clear quantitative relationship with the Fsss particle sizes of the raw WC in both states, but the size of the raw material particles can still be used to predict the alloy grain size and coercive force.

Conclusions

Based on the above, the following conclusions can be drawn:

1.Coarse WC powders with larger as-supplied Fsss particle sizes tend to have higher milled Fsss particle sizes and larger grain sizes, leading to alloys with larger grain sizes.

2.The Fsss particle size in the milled state of coarse WC can be used to evaluate the grain size of coarse WC and predict the grain size of WC-Co alloys. Under the test conditions, the alloy grain size is 1.1 to 1.3 times the Fsss particle size of the milled WC.

3.Coarse WC powders with as-supplied Fsss particle sizes around 10 μm have a better consistency in grain size distribution with the alloy WC grain size distribution compared to extremely coarse WC powders with Fsss particle sizes above 25 μm.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 特大毛片毛片免费视频-成人伊人青草久久综合网-91亚洲蜜桃内射后入在线观看-日韩情色电影中文字幕| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 亚洲天堂成人免费视频-青草精品在线观看视频-国产三级在线观看国产精品-黄色日本黄色欧美视频| 高清国产av一二三四-少妇激情高潮视频网站-被公么玩弄邻居人妻中文字幕-亚洲免费成人av在线| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 国产精品18禁免费无摭挡-国产精品久久久看三级-国产亚洲精品熟女国产成人-国产亚洲精品不卡中文| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 国产精品97一区二区三区-四虎永久免费视频播放-久久五十路丰满熟女中出-国产18日韩亚洲欧美| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 禁播的黄色片精品久久-人妻少妇精品视频久久-巨乳人妻的诱惑在线看-亚洲欧美日韩中文久久| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 在线播放国产av蜜桃-国产精品自拍免费在线-亚洲国产成人综合青青-日韩成人高清在线视频| 久久99国产精品久久99蜜桃-国产在线精品福利91啪-日本啪啪免费观看视频-免费看的日麻批网站视频| 久久女婷五月综合色啪色老板-国内不卡的一区二区三区中文字幕-在线观看一区二区三区日韩-五月天丁香婷婷狠狠狠| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 国产免费不卡一区二区-亚洲中文日韩一区二区三区-狂干亚洲老熟女性视频-亚洲精品午夜福利久久| 四只虎视频大全免费观看-日本黄色激情免费网站-免费岛国大片在线播放-国产午夜福利在现观看| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干| 亚洲综合另类精品小说-国产不卡一区二区三区观看评价-亚洲中文字幕有码道一-一个成人永久免费视频| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 在线视频观看一区二区三区-日韩成年人高清精品不卡一区二区-成人深夜节目在线观看-亚洲精品中文字幕一二三| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 久久热大香蕉在线视频-nana在线观看高清视频 视频-久久最新视频在线观看-日韩高清不卡视频在线观看| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 国产在线一区二区三区不卡-久久精品女人毛片水多国产-无人区一码二码三码四码区免费-日韩亚洲国产成人在线| 日韩不卡高清在线视频-性色av蜜臀av一区二区-欧美精品一国产成人91-久久99热只有频精品| 国产亚洲精品视频自拍-激情五月开心五月婷婷-日本少妇三级交换做爰做-国产日韩三级中文字幕| 国产精品中文字幕久久-国产精品一区二区在线免费-韩国午夜三级一区二区-亚洲国产成人精品一区刚刚| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频|