色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Rare earth hard alloy and its properties 1
I. Overview
Cemented carbide is also known as the "teeth" of the industry. Since its inception, as an efficient tool material and structural material, its application field has been continuously expanded, which has played an important role in promoting industrial development and scientific and technological progress. In the past 20 years, tungsten-cobalt-base
d cemented carbides have been widely used in metal cutting, metal forming tools, mining drilling, and wear parts because of their high hardness, toughness and excellent wear resistance compared to other hard alloys. .
Cemented carbide has a series of excellent performance characteristics: it has high hardness and wear resistance, especially valuable, it has good red hardness, exceeds the normal temperature hardness of high speed steel at 600 °C, and exceeds carbon steel at 1000 °C. Normal temperature hardness; has good elastic modulus, usually (4~7)×104kg/mm2, good rigidity at normal temperature; high compressive strength, up to 600kg/mm2; good chemical stability, Some grades of cemented carbide are resistant to acid and alkali corrosion and do not undergo significant oxidation even at high temperatures; low coefficient of thermal expansion. The thermal conductivity and conductivity are close to those of iron and iron alloys.
According to the average grain size of WC in cemented carbide, cemented carbide can be divided into: nanocrystalline cemented carbide, ultrafine grained cemented carbide, submicron grained cemented carbide, fine grained cemented carbide, Medium grain cemented carbide, coarse grained cemented carbide, super coarse grained cemented carbide.
Sub-micron and ultra-fine grained carbides have high hardness and wear resistance and are widely used in cutting tools, saw blade, milling cutters, stampers, valve stem components, nozzles for sand blasting equipment, etc.
Ultra-thick grained carbide has better toughness and thermal fatigue resistance, and its application in mining and excavation tools has developed rapidly. Gradient alloys and carbide-diamond composites can be used to highlight certain specific properties according to different application requirements, so the application of tools and mining tools has developed rapidly.
The properties of tungsten-cobalt-based cemented carbides mainly depend on the content of Co and the grain size of WC. The typical cobalt-cobalt cemented carbide has a cobalt content of 3 to 30 wt%, and the WC grain size ranges from submicron to several. Micron. The development of nano-scale particle synthesis technology, especially nano-scale WC and Co particles, greatly improved the mechanical properties of nano-WC-Co cemented carbide.
When the WC grain is smaller than the submicron size, the strength, hardness, toughness, and wear properties of the alloy are greatly improved, and the alloy having a high density can be obtained while lowering the sintering temperature. Therefore, in the field of cemented carbide, the conversion of traditional types to ultra-fine and nano-scale has become its development trend.
However, WC grain growth has always been a bottleneck in the development and production of ultra-fine WC-Co alloys. Adding certain additives to cemented carbide is one of the effective ways to improve the properties of the alloy. There are two main types of additives added to the cemented carbide: one is a refractory metal carbide and the other is a metal additive. The role of the additive is to reduce the sensitivity of the alloy to sintering temperature fluctuations and sensitivity to changes in carbon content, to prevent uneven growth of carbide grains, to change the phase composition of the alloy, thereby improving the structure and properties of the alloy.
The most commonly used carbide additives include chrome carbide (Cr3C2), vanadium carbide (VC), molybdenum carbide (Mo2C or Mo C), cobalt carbide, tantalum carbide, and the like. The choice of inhibitor depends on the total inhibitory effect, and the inhibitory effects are as follows: VC>Cr3C2>Nb C>Ta C>Ti C>Zr/Hf C. Commonly used metal additives are chromium, molybdenum, tungsten, rhenium, ruthenium, copper, aluminum and rare earth elements. The addition of rare earth elements in cemented carbide not only inhibits the growth of WC grains during sintering, but also improves the mechanical properties and wear resistance of the alloy, thereby further improving the service life of the products. In the field of cemented carbides, research on rare earth additives has been a hot topic, but the general idea is to add non-nano-scale rare earth additives to modify hard alloys, but the addition of nano-rare earth additives has rarely been reported.
The use of the nano rare earth additive is lower than that of the ordinary rare earth additive, and the gap with the WC grain (large circle) is small, and the arrangement is more dense. The size of the ordinary rare earth additive is almost the same as that of WC, so it is easy to form a crack source. Therefore, this experiment uses nano rare earth as an additive to achieve the purpose of not improving the cost and improving the performance. China is rich in rare earth resources. If we use this kind of thinking to develop new technology, make full use of China’s tungsten ore and rare earth resources, research and develop hard alloy rare earth modified materials, improve the production level and development of China’s cemented carbide industry. High-quality and high value-added deep-processed carbide products, improving competitiveness, reversing the unfavorable situation in the international market, and achieving a virtuous cycle of raw materials are of great significance.
2. Rare earth hard alloy
The rare earth element is 15 lanthanides of the third subgroup of Mendeleev’s periodic table with atomic numbers ranging from 57 to 71, plus a total of 17 elements, which are similar to those of electronic structures and chemical properties. Rare earth is known as the “treasure house” of new materials, and is a group of elements that scientists at home and abroad, especially material experts, are most concerned about. Due to its special properties, rare earths have been widely used in metallurgical materials, optics, magnetism, electronics, machinery, chemicals, atomic energy, agriculture and light industry. Although rare earths are used as additives and modifiers, their direct output value and profit are not high, but the secondary economic benefits can be increased by tens or even hundreds of times. China’s rare earth resources are abundant, and its reserves rank first in the world, and its comprehensive production capacity ranks second in the world. At home and abroad, the application of rare earths and their compounds is almost everywhere in the national economy. Rare earth has obvious improvement on the performance of cemented carbide. A large number of studies have shown that the addition of rare earth can improve the strength and toughness of cemented carbide to a large extent, so that rare earth-added cemented carbide can be widely used in tool materials and mining tools. , molds, top hammers, etc., have excellent development prospects. The rare earths commonly used as additives are Ce, Y, Pr, La, Sc, Dy, Gd, Nd, Sm, and the like. The addition form is generally an oxide, a pure metal, a nitride, a hydride, a carbide, a rare earth-cobalt intermediate alloy, a carbonate, a nitrate, and the like. The type and morphology of the added rare earth affect the physical and mechanical properties of the cemented carbide.
3. Mechanism of strengthening and toughening of rare earth
The addition of trace rare earth elements in the cemented carbide not only inhibits the grain growth of the alloy during the sintering process, but also improves the mechanical properties of the alloy, thereby further improving the service life of the product. The strengthening mechanism of rare earth on cemented carbide is as follows:
(1) Zhang Fenglin et al. believe that when the γ phase is cooled from high temperature to room temperature, fcc→hcp is a diffusion type (assisted by Ms mechanism) phase transition. Among them, γfcc and γhcp phase account for about 10%. Since the addition of rare earth can inhibit the martensitic transformation, the content of γhcp in the binder phase can be reduced. The mechanism of its inhibition of martensite transformation may be due to two reasons: one is the rare earth oxide pinning dislocation, which hinders the dislocation motion; on the other hand, the rare earth oxide is pinned at the defect location, making the potential ε nucleation nucleus The embryo is reduced. Thereby, the brittle ε phase is reduced and the toughness α phase is increased.
Wang Ruikun and others believe that the addition of trace rare earths in cemented carbides can inhibit the expansion of stacking faults in the Co binder phase, thereby inhibiting the conversion of fcc α-Co→hcp ε-Co (layered nucleation), making fcc α-Co in the alloy. The volume fraction increases. α-Co has 12 slip systems, while ε-Co has only 3 slip systems. Rare earth cemented carbide is mainly composed of fcc α-Co, which will improve its ability to coordinate strain and relax stress, thereby improving its toughness.
(2) Effect on W solid solubility.
The segregation of rare earths at the WC/Co phase interface affects the desolvation of elements such as W and Ti from Co. It is possible to increase the content of W and Ti in the binder phase, thereby functioning as a solid solution strengthening. But the mechanism is not fully recognized.
(3) Refine the organization.
The rare earth in the cemented carbide is distributed at the interface of WC/Co and WC/WC. The adsorption of rare earth elements at the interface will definitely reduce the interfacial energy of the solid-liquid phase interface. This can suppress the coarsening process of WC grains during sintering.
(4) Strengthening and toughening of grain boundaries and phase boundaries.
In the fracture of cemented carbide, it is mainly along the Co bond phase fracture, and there are some cracks along the WC grain. Therefore, its fracture behavior has an important relationship with the behavior of the WC/Co interface. The presence of rare earths in cemented carbides is mainly due to oxides or intermetallic compounds. The distribution is mainly at the interface of WC/Co and WC/WC. A small amount of rare earth oxides can also be found in the binder phase. Its shape is mainly spherical or polyhedral. Due to the role of rare earth in purifying grain boundaries and phase boundaries, and the improvement of the strength of the phase interface, the fracture toughness of rare earth cemented carbides will be greatly improved.
Due to the different ways, forms, types of rare earths, and research methods, the research conclusions are different, and the proposed mechanism will be different and even contradictory. The research on rare earth toughened cemented carbides needs further study.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 国色天香精品亚洲精品-日韩精品电影免费观看-亚洲精品中文字幕综合-成人午夜视频福利在线观看| 蜜臀网站视频在线播放-四虎午夜福利视频在线观看-黄色国产精品福利刺激午夜片-亚洲精品国产成人av| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 精品国产乱码一二三区在线-精品国产一区二区在线视-国内男女精品一区二区三区-亚洲中文字幕国内精品| 正在播放会所女技师口爆-久热久热精品在线视频-久久久精品蜜桃久久九-亚洲精品无吗无卡在线播放| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 亚洲三级电影久久网络-中文字幕第一页亚洲天堂-九九热视频这里只有精-国产免费av国片精品| 国产精品一区久久精品国产-一区二区三区在线日本视频-亚洲欧美天堂精品在线-午夜久久一区二区狠狠干| 免费手机在线观看bbb视频-国产欧美亚洲精品第1页青草-国产黄a三级三18级三级看三级-宅男视频在线观看一区二区三区| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 人人澡人人妻人人干-亚洲中国麻豆美女av-日本淫妇一区二区三区-美女午夜福利偷偷要网站| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 日韩中文字幕乱码久久-日本一本无道码日韩精品-久久最黄性生活又爽又黄特级片-亚洲av香蕉精品一区二区三区| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 亚洲国产精品一区二区三区视频-午夜福利国产一区二区在线观看-亚洲欧美成人中文字幕-青青草好吊色在线视频| 一本色道亚州综合久久精品-91麻豆国产专区在线观看-一级二级三级国产视频-熟女av天堂免费高清| 精品国产精品久久一区免费式-男女高清无遮挡免费视频-av男人的天堂一区二区三区-免费观看视频网站97| 一区二区三区岛国av毛片-国产男女无遮挡猛进猛-久久精品人妻丝袜乱一区二区三区-国产超级对对碰在线观看| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 国产精品久久久久久野战-人妻少妇中文字幕在线一区-国产自拍日韩在线视频-少妇宅女午夜福利院免费| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| av网站在线观看网站-最新国产欧美精品91-国产一区二区三区在线导航-日韩高清在线中文字幕一区| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 欧美福利在线观看视频-日本少妇一区二区三区四区-日韩人妻丝袜中文字幕-亚洲一区二区三区最新视频| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码|