色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The reliability of chip breaking in machining has a significant impact on both normal production and operator safety. In cutting operations, fragmented chips can splatter and cause injury, as well as damage the machine tool. On the other hand, long ribbon-like chips can get entangled with the workpiece or the tool, potentially scratching the workpiece, leading to tool breakage, and even compromising worker safety.

For CNC machine tools (machining centers) and other automated machining equipment, the issue of chip breaking becomes even more critical due to the larger number of tools and their close interaction with the tool holder. If even one tool has unreliable chip breaking, it could disrupt the machine’s automatic cycle and, in some cases, halt the entire production line. Therefore, when designing, selecting, or grinding tools, the reliability of chip breaking must be taken into consideration. Specifically for CNC machine tools (machining centers), the following requirements should be met:

  1. Chips must not wrap around the tool, workpiece, or adjacent tools and equipment.
  2. Chips must not splatter to ensure the safety of operators and observers.
  3. During precision machining, chips must not scratch the already processed surfaces of the workpiece, affecting the quality of those surfaces.
  4. Ensuring the intended durability of the tool, avoiding premature wear, and preventing tool breakage as much as possible.
  5. When chips flow out, they should not obstruct the delivery of cutting fluid.
  6. Chips should not damage machine tool guides or other components.How to Carry Out Chip Breaking on Work Piece? 2

Classification of Chip Shapes

The shape of chips produced in machining varies depending on factors such as workpiece material, tool geometry, and cutting parameters. Common chip shapes include ribbon chips, C-shaped chips, fragmented chips, pagoda-shaped curled chips, spring-shaped curled chips, long, tight spiral chips, and spiral chips (see Figure 1).

Ribbon Chips

When machining ductile materials at high speeds, continuous ribbon chips can form easily. These chips can become entangled around the workpiece or tool, potentially scratching the workpiece surface, damaging the cutting edge of the tool, or even causing injury. Thus, it’s generally best to avoid forming ribbon chips. However, there may be situations where ribbon chips are desired to facilitate chip removal, such as when boring blind holes on a vertical boring mill.

C-Shaped Chips

When turning general carbon steel or alloy steel materials and using cutting tools with chip breakers, C-shaped chips can form. C-shaped chips don’t have the disadvantages of ribbon chips. However, most C-shaped chips are prone to impact the back surface of the cutting tool or the workpiece, causing them to break (see Figure 2). The high-frequency breaking and fracturing of chips can affect the smoothness of the cutting process and, subsequently, the surface roughness of the finished part. Therefore, in precision machining, it’s generally not desired to produce C-shaped chips, but instead, longer spiral chips (see Figure 3) are preferred to maintain a smoother cutting process.

Spring-Shaped Curled Chips

When heavy cuts and large feed rates are used to turn steel parts on a heavy-duty lathe, wide and thick chips are produced. Forming C-shaped chips in this scenario can easily damage the cutting edge and even pose an injury risk. To prevent this, the radius of the chip breaker’s groove bottom is increased to create spring-shaped chips (see Figure 4). These chips collide and break on the machining surface, falling under their weight.

Spiral Chips

The formation of long, tight spiral chips is a smoother process, and they are easy to clean up. This chip shape is favored for use on regular lathes.

Pagoda-Shaped Curled Chips

When CNC machining or using automated machinery, it’s preferable to produce this chip shape because it doesn’t wrap around the cutting tool or workpiece, making it easier to clean up.

Fragmented Chips

When turning brittle materials like cast iron, brittle brass, or phosphor bronze, needle-like or fragmented chips can easily form. These chips are prone to splattering and causing injuries, as well as damaging the machine tool. Using chip-breaking methods can turn these chips into short, curled chips.

In conclusion, the desired chip shape in cutting operations varies based on specific conditions. Regardless of the chip shape, it’s essential for chip breaking to be reliable.

How to Carry Out Chip Breaking on Work Piece? 3

Mechanismus?of Chip Breakage

Whether metal chips are prone to breaking during metal cutting is directly related to the deformation of chips. To understand the principles of chip breakage, one must first examine the deformation patterns of chips.

During metal cutting, chips undergo significant plastic deformation. This process leads to an increase in chip hardness but a significant decrease in plasticity and toughness. This phenomenon is known as strain hardening. After strain hardening, the chips become hard and brittle, making them prone to breaking when subjected to alternating bending or impact loads.

The degree of plastic deformation that chips undergo affects the extent of their strain hardening and susceptibility to breaking. In cases where high-strength, high-plasticity, and high-toughness materials are being machined, measures must be taken to increase chip deformation, thereby reducing their plasticity and toughness to facilitate chip breaking.

Chip deformation can be divided into two components:

Basic Deformation:?This is the deformation that occurs during the cutting process and is close to the values of basic deformation measured when free-cutting with a flat-fronted tool. The primary factors affecting basic deformation are the tool’s front clearance angle, negative rake angle, and cutting speed. A smaller front clearance angle, wider negative rake, and lower cutting speed result in greater chip deformation, which is favorable for chip breaking. Therefore, reducing the front clearance angle, increasing the negative rake angle, and decreasing the cutting speed can promote chip breaking.

Additional Deformation:?In most cases, basic deformation alone cannot result in chip breaking. Additional deformation is required to harden and break the chips. The simplest method to subject chips to additional deformation is to grind (or press) chip-breaking grooves on the tool’s front surface. When chips flow into these grooves, they experience additional bending and coiling deformation, leading to further hardening and brittleness. This makes the chips easily break upon contact with the workpiece or the tool’s back surface.

Wie erfolgt der Spanbruch am Werkstück? 4

Common Chip Breaking Methods

Using Chip-Breaking Grooves

Chip-breaking grooves are effective in achieving both basic and additional deformation. The shape, size, and angle of the grooves play a crucial role in chip breaking.

Using Chip Breakers

Chip breakers can be fixed or adjustable and are effective in controlling chip curling and breaking. They are often used on medium and large-sized machine tools.

Using Chip-Breaking Devices

These devices come in mechanical, hydraulic, and electrical forms, are reliable, but typically cost more. They are commonly used in automated production lines.

Using Pre-Grooved Workpiece Surfaces

Grooves are pre-cut on the workpiece surface parallel to its axis. These grooves, which are slightly shallower than the cutting depth, create weaker sections in the chip, facilitating chip breaking. This method can be particularly useful for machining tough materials.

In summary, achieving chip breaking depends on the material and cutting conditions. Various methods, including adjusting tool geometry, modifying cutting parameters, and using chip-breaking devices, can be employed to promote reliable chip breaking. Chip breaking is essential for safety and efficient metal cutting processes.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

免费人成视频在线观看播放网站-日韩精品久久精品三级-91精品一区二区三区久久蜜桃-中文字幕av久久激情亚洲精品| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 亚洲综合中文在线视频-在线视频福利精品91-久一在线免费播放视频-精品手机亚洲一区二区三区| 日本av自拍偷拍视频-日韩精品人妻一区二区三区-看片福利国产午夜三级看片-在线观看视频最新信息好幫手| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 少妇特殊按摩高潮连连-国产成熟美女三级视频-亚洲男人天堂成人免费-国产粉嫩美女在线观看| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 91精品18国产在线观看-午夜福利原创精品视频-欧美日韩在线亚洲另类-欧美日韩亚洲国产综合在线| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 亚洲永久在线宅男天堂-精品亚洲成a人在线看片-国产精品人成免费国产-亚洲欧洲国产精品自拍| 91偷自产一区二区三区精品-亚洲av一区二区三区中文-国产一级黄色性生活片-最近中文字幕在线一区二区三区| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 日本av在线一区二区三区-日韩人妻在线中文字幕-亚洲国产一区二区三区久久-国产日本一区二区三区久久| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 欧美日韩在线无卡免费播v-91麻精品国产91久久久久-中文字幕亚洲综合久久菠萝蜜-久久青青草原资源福利| 国产自拍成人激情视频-欧美大香蕉在线视频观看-精品人妻一区二区三区麻豆91-经典三级一区二区三区| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 亚洲精品中文综合第一页-91九色国产在线观看-小少妇特殊按摩高潮不止-沈阳老熟女多毛嗷嗷叫| 日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 91偷自产一区二区三区精品-亚洲av一区二区三区中文-国产一级黄色性生活片-最近中文字幕在线一区二区三区| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 青青草免费视频手机版-男人天堂欧美日韩在线-成人黄色av在线免费看-超短裙女教师在线观看| 久久精品国产亚洲av五区-日韩麻豆视频在线观看-亚洲欧洲国产成人综合在线-美利坚合众国亚洲视频| 精品国产乱码一二三区在线-精品国产一区二区在线视-国内男女精品一区二区三区-亚洲中文字幕国内精品| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久| 国产av一区二区三区在线-亚洲国产欧洲在线观看-跪求能看的国产熟女av网-国内色精品视频在线网址| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 久久精品极品盛宴免视-五月综合激情中文字幕-精品中文字幕一区二区精彩-中文字幕熟女日韩人妻| 亚洲不卡av影院在线-久久精品伊人久久精品-亚洲国产日韩欧美三级-久久亚洲中文字幕精品二区| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 日韩精品极品系列在线免费视频-国产中文字幕有码视频-日韩一区二区免费电影-成人夜晚在线观看视频| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566|