色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Ermüdungsrisse sind im Allgemeinen das Ergebnis periodischer plastischer Verformung in lokalen Bereichen. Ermüdung ist definiert als ?Versagen unter wiederholter Belastung oder anderen Arten von Belastungsbedingungen, und dieses Belastungsniveau reicht nicht aus, um ein Versagen zu verursachen, wenn es nur einmal angewendet wird.“ Diese plastische Verformung entsteht nicht aufgrund der theoretischen Belastung des idealen Bauteils, sondern weil die Bauteiloberfl?che tats?chlich nicht erfasst werden kann.

August W?hler ist der Pionier der Ermüdungsforschung und stellt eine empirische Methode vor. Zwischen 1852 und 1870 untersuchte W ?hler den fortschreitenden Ausfall von Eisenbahnachsen. Er baute den in Bild 1 gezeigten Prüfstand. Dieser Prüfstand erm?glicht es, zwei Eisenbahnachsen gleichzeitig zu drehen und zu biegen. W?hler zeichnete den Zusammenhang zwischen der Nennspannung und der zum Versagen führenden Lastspielzahl auf, das sp?ter W?hlerdiagramm genannt wird. Jede Kurve wird immer noch als aw ? hler Linie bezeichnet. Das Sn-Verfahren ist auch heute noch das am weitesten verbreitete Verfahren. Ein typisches Beispiel dieser Kurve ist in Abbildung 1 dargestellt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 2 auswirken
Bild 1 Rotations-Biege-Ermüdungsversuch von W ? hler

Durch die w ?hler Linie k?nnen mehrere Effekte beobachtet werden. Zun?chst bemerken wir, dass die W?hlerlinie unterhalb des übergangspunktes (ca. 1000 Zyklen) ungültig ist, da die Nennspannung hier elastoplastisch ist. Wir werden sp?ter zeigen, dass Ermüdung durch die Freisetzung von plastischer Scherspannungsenergie verursacht wird. Daher gibt es keine lineare Beziehung zwischen Spannung und Dehnung vor dem Bruch und kann nicht verwendet werden. Zwischen dem übergangspunkt und der Ermüdungsgrenze (etwa 107 Zyklen) ist die Sn-basierte Analyse gültig. Oberhalb der Ermüdungsgrenze nimmt die Steigung der Kurve stark ab, daher wird dieser Bereich oft als Bereich der ?unendlichen Lebensdauer“ bezeichnet. Dies ist jedoch nicht der Fall. Beispielsweise hat eine Aluminiumlegierung keine unbegrenzte Lebensdauer, und selbst Stahl hat keine unbegrenzte Lebensdauer unter Belastung mit variabler Amplitude.

Mit dem Aufkommen der modernen Verst?rkungstechnologie k?nnen Menschen Ermüdungsrisse genauer untersuchen. Wir wissen heute, dass die Entstehung und Ausbreitung von Ermüdungsrissen in zwei Phasen eingeteilt werden kann. In der Anfangsphase breitet sich der Riss in einem Winkel von etwa 45 Grad relativ zur aufgebrachten Last aus (entlang der Linie der maximalen Schubspannung). Nach dem überqueren von zwei oder drei Korngrenzen ?ndert sich seine Richtung und erstreckt sich entlang der Richtung von etwa 90 Grad relativ zur aufgebrachten Last. Diese beiden Stadien werden als Riss Stufe I und Riss Stufe II bezeichnet, wie in Abbildung 2 dargestellt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 3 auswirken
Abbildung 2 Schematische Darstellung des Risswachstums in Stufe I und Stufe II

Wenn wir einen Riss im Stadium I bei starker Vergr??erung beobachten, k?nnen wir sehen, dass die Wechselspannung zur Bildung eines durchgehenden Gleitbandes entlang der maximalen Scherebene führt. Diese Gleitb?nder gleiten ?hnlich wie ein Kartenspiel hin und her, was zu unebenen Oberfl?chen führt. Die konkave Oberfl?che bildet schlie?lich einen ?knospenden“ Riss, wie in Abbildung 3 dargestellt. In Phase I dehnt sich der Riss in diesem Modus aus, bis er auf die Korngrenze trifft, und stoppt vorübergehend. Wenn den benachbarten Kristallen genügend Energie zugeführt wird, wird der Prozess fortgesetzt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 4 auswirken
Abbildung 3 Schematische Darstellung eines kontinuierlichen Gleitbandes

Nach dem überqueren von zwei oder drei Korngrenzen tritt die Richtung der Rissausbreitung nun in den Phase-II-Modus ein. In diesem Stadium haben sich die physikalischen Eigenschaften der Rissausbreitung ge?ndert. Der Riss selbst stellt ein Makrohindernis für den Spannungsfluss dar und verursacht eine hohe plastische Spannungskonzentration an der Rissspitze. Wie in Abbildung 4 gezeigt. Es ist zu beachten, dass sich nicht alle Risse im Stadium I bis zum Stadium II entwickeln.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 5 auswirken
Abb4

Um den Ausbreitungsmechanismus des Stadiums II zu verstehen, müssen wir die Situation des Rissspitzenquerschnitts w?hrend des Spannungszyklus betrachten. Wie in Abbildung 5 gezeigt. Der Ermüdungszyklus beginnt, wenn die Nennspannung am Punkt ?a“ liegt. Wenn die Spannungsintensit?t zunimmt und Punkt ?B“ passiert, stellen wir fest, dass sich die Rissspitze ?ffnet, was zu einer lokalen plastischen Scherverformung führt, und der Riss sich bis zu Punkt ?C“ im ursprünglichen Metall ausdehnt. Wenn die Zugspannung durch den ?d“-Punkt abnimmt, beobachten wir, dass sich die Rissspitze schlie?t, aber die dauerhafte plastische Verformung hinterl?sst eine einzigartige Zacke, die sogenannte ?Schnittlinie“. Wenn der gesamte Zyklus am ?e“-Punkt endet, beobachten wir, dass der Riss nun die ?Da“-L?nge vergr??ert hat und zus?tzliche Schnittlinien gebildet hat. Es versteht sich nun, dass der Bereich des Risswachstums proportional zum Bereich der aufgebrachten elastisch-plastischen Rissspitzendehnung ist. Ein gr??erer Zyklusbereich kann ein gr??eres Da bilden.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 6 auswirken
Abb. 5 Schematische Darstellung der Rissausbreitung im Stadium II

Faktoren, die die Wachstumsrate von Ermüdungsrissen beeinflussen

Der Einfluss folgender Parameter auf die Ermüdungsrisswachstumsrate wird untersucht und konzeptionell erkl?rt:

1Scherspannung

Aus dem Diagramm ist ersichtlich, dass bei der periodischen ?nderung der St?rke der Nennspannung eine gewisse ?Menge“ an Schubspannung freigesetzt wird. Und je gr??er die Bandbreite der Spannungs?nderungen, desto gr??er die freigesetzte Energie. Anhand der W?hlerkurve in Bild 1 k?nnen wir erkennen, dass die Ermüdungslebensdauer exponentiell mit zunehmendem Lastspielbereich abnimmt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 7 auswirken
Abb. 6 Elastoplastische Spannung und Dehnung entlang der Gleitfl?che und an der Risswurzel

2 durchschnittliche Belastung

Die durchschnittliche Spannung (Eigenspannung) ist auch ein Faktor, der die Ermüdungsbruchrate beeinflusst. Wenn die Ausdehnungsspannung auf den Riss der Phase II ausgeübt wird, wird der Riss konzeptionell gezwungen, sich zu ?ffnen, sodass jeder Spannungszyklus eine signifikantere Wirkung hat. Wenn im Gegensatz dazu die durchschnittliche Druckspannung angelegt wird, wird der Riss gezwungen, sich zu schlie?en, und jeder Spannungszyklus muss die Vordruckspannung überwinden, bevor sich der Riss weiter ausdehnen kann. ?hnliche Konzepte gelten auch für Risse im Stadium I.

3 Oberfl?chenbeschaffenheit

Da Ermüdungsrisse normalerweise zuerst an der Oberfl?che von Bauteilen mit Defekten auftreten, beeinflusst die Qualit?t der Oberfl?che die Wahrscheinlichkeit des Auftretens von Rissen erheblich. Obwohl die meisten Materialtestmuster hochglanzpoliert sind, erreichen sie auch die beste Ermüdungslebensdauer. Tats?chlich k?nnen die meisten Komponenten nicht mit den Proben verglichen werden, also müssen wir die Ermüdungseigenschaften modifizieren. Die Oberfl?chenbeschaffenheit hat einen gr??eren Einfluss auf die Ermüdung von Komponenten, die Belastungszyklen mit geringer Amplitude ausgesetzt sind.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 8 auswirken
Bild 7 Schematische Darstellung des Einflusses der Zyklusfolge Der Einfluss der Oberfl?chengüte l?sst sich durch Modellierung ausdrücken, dh durch Multiplikation der W?hlerlinie mit dem Oberfl?chenkorrekturparameter an der Ermüdungsgrenze.

4 Oberfl?chenbehandlung

Oberfl?chenbehandlung kann verwendet werden, um die Ermüdungsbest?ndigkeit von Komponenten zu verbessern. Der Zweck der Oberfl?chenbehandlung besteht darin, Druckeigenspannungen auf der Oberfl?che zu bilden. W?hrend der Periode mit niedriger Amplitude ist die Spannung auf der Oberfl?che offensichtlich gering und beh?lt sogar den Kompressionszustand bei. Daher kann die Ermüdungslebensdauer signifikant verl?ngert werden. Wie bereits erw?hnt, gilt diese Situation jedoch nur für Komponenten, die Belastungszyklen mit geringer Amplitude ausgesetzt sind. Wenn eine Periode mit hoher Amplitude angewendet wird, wird die Vorkomprimierung durch die Periode mit hoher Amplitude überwunden, und ihre Vorteile gehen verloren. Wie bei der Oberfl?chenqualit?t kann der Einfluss der Oberfl?chenbehandlung durch Modellierung gezeigt werden.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 成人在线自拍偷拍视频-国产剧情av中文字幕-久久国产劲爆内射日本-劲爆欧美中文字幕精品视频| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 高清有码在线观看日本-精品少妇人妻一区av-色综合久久成人综合网-久久久国产精品人妻一区二区三区| av天堂免费中文在线-91麻豆国产综合精品久久-日韩av在线播放高清-台湾佬自偷自拍情侣在线| 亚洲无吗视频在线观看-成人免费在线视频平台-国产午夜视频看看果冻-国产黄色片国产黄色片| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 日本一区二区三区乱在线视频-国产精品一区二区精品视频-日本人妻系列在线免费看-国产成人高清三级视频| 日本黄网站三级三级三级-91网址免费在线观看-肥老熟女性强欲五十路-无套内谢少妇高朝毛片| 欧美日韩国产激情综合-九九精品国产亚洲av日韩-国产午夜激情免费视频-日本厕所偷拍尿尿视频| 国产黄片一区二区在线-国产精品99国产精品久久-国产,欧美视频免费看-长腿丝袜国产在线观看| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 国产亚洲一区二区三区综合片-亚洲天堂日韩精品在线-有码视频在线观看日本专区-亚洲精品成人福利在线| 亚洲免费视频免费视频-年轻人的性生活免费视频-亚洲国产aa精品一区二区高清-可以免费看的av毛片| 国产免费无套精品视频-日本特色特黄aaa大片免费-日本精品免费一区二区三区-九九热精品视频在线免费| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 午夜中文字幕一区二区三区-亚洲精品av在线免费观看-蜜臀av一区二区三区久久bu-五月激情综合在线视频| 四虎在线精品视频免费播放-日韩女同av在线观看-av日韩黄片在线播放-日本人体午夜福利视频| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| 一区二区三区岛国av毛片-国产男女无遮挡猛进猛-久久精品人妻丝袜乱一区二区三区-国产超级对对碰在线观看| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 女优av天堂中文字幕-国产亚洲精品成人av久-国产黄三级三级三级三级一区二区-日本高清视频不卡一区二区| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 中文字幕在线成人大片-日本一区二区在线视频播放-精品在线亚洲一区二区三区-在线免费观看播放视频| 亚洲精品中文字幕播放-9l精品人妻中文字幕色-亚洲不卡一区二区在线看-97精品国产在线观看| 亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 日本成熟人妻在线看片-亚洲国语精品激情在线-欧美性生活之欧美日韩-成人黄色av在线观看| 日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 九九久久精品国产婷婷-亚洲少妇视频在线观看-国产网友精品自拍视频-超碰在线成人免费精品| 青青草免费视频手机版-男人天堂欧美日韩在线-成人黄色av在线免费看-超短裙女教师在线观看| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆|