色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

End mills’ manufacturing predominantly adhere to the traditional two-dimensional design and the linear “design-trial production-trial cutting” model. This approach is fraught with drawbacks: it is difficult to accurately depict the three-dimensional contours of the end milling cutter in two-dimensional drawings; the complexity of its structure and the variety of its dimensions necessitate the use of expensive five-axis CNC tool grinders for precise finishing, leading to high costs and long cycles for the trial production of individual products. Moreover, to fully grasp performance data, it is essential to simulate actual machining conditions and conduct cutting tests throughout the tool’s entire lifecycle, a process that is both time-consuming and costly. This traditional model has undoubtedly become a heavy shackle on the efficiency of end milling cutter development, failing to meet the needs of modern cutter research and development.

Embracing the trend of three-dimensional parametric design technology, we have shifted to a new model of “parametric design (CAD) – grinding simulation (CAE) – cutting simulation analysis (CAE).” Designers no longer need to physically manufacture prototypes; instead, they can create the three-dimensional solid model of the tool by adjusting geometric parameters. Subsequently, cutting simulation technology is used to evaluate the performance of the design parameters, thereby optimizing the structural parameters of the tool. This transformation has significantly reduced research and development costs and cycles, injecting formidable competitiveness into tool manufacturing companies. Therefore, delving into the research of tool parametric design technology is of self-evident significance.

 

Techniques and Research Status Related to the Parametric Design of end milling?Cutters

The parametric design of integral end milling?cutters refers to the automatic and rapid generation of a three-dimensional solid model of the end milling?cutter by inputting structural dimension parameters such as the tool’s front angle, back angle, helix angle, diameter, and cutting edge length. To achieve the three-dimensional parametric design of end milling?cutters within a computer, it is necessary to first establish a mathematical description model of the cutter’s structural features. By employing theories and methods related to computational geometry, computer graphics, and Boolean operations, the modeling, display, and storage of the end milling?cutter in the computer are realized. Finally, the development of the parametric design software system is completed through the creation of a user interface and database. Therefore, the main research content of the parametric design of integral end milling?cutters includes the establishment of mathematical models and the software implementation.

The mathematical modeling of integral end milling?cutters involves using mathematical expressions of points, lines, or surfaces to describe the dimensional structure and topological relationships of each spatial structure of the end milling?cutter. The description method will directly determine the precision of the end milling?cutter model and the ease of software implementation. Currently, research on the mathematical modeling of end milling?cutters primarily includes structures such as bar stock, helical cutting edges, and chip flute cross-section lines.

Bar Stock Mathematical Model

As the manufacturing blank for integral end milling?cutters, the bar stock determines the basic structural parameters of the cutter, such as diameter and cutting edge length, as well as the selection of the tool holder. The mathematical model of the bar stock mainly includes two parts: the detailed modeling of the shank and the modeling of the cutter’s rotational contour. By dividing the end milling?cutter body into the shank, neck, and working parts (including the stem and head), and considering the features of the cutter’s shank (taper shank, straight shank, presence or absence of a positioning slot) and head features (rounded, ball-end, chamfered), a general mathematical model for the end milling?cutter bar stock is obtained based on the universal rotational body mathematical model, as shown in Figure 1.

Schaftfr?ser

 

Helical Cutting Edge Mathematical Model

The helical cutting edge curve of an integral end milling?cutter can alter the chip flow direction, increase the actual cutting rake angle, and extend the length of the cutting edge involved in cutting simultaneously, thereby improving the surface machining quality of the workpiece and the tool life. Therefore, the design of the cutting edge curve plays a crucial role in the design of end milling?cutters. The cutting edge curve of an integral end milling?cutter mainly consists of two parts: the peripheral cutting edge curve and the bottom cutting edge curve (for ball-end mills).

 

The helical cutting edges of end milling?cutters mainly come in three forms:

1.Constant pitch helical cutting edges, where the helix angle with the generatrix is a constant value, and the helix angle with the axis is also a constant value.

2.Based on the concept of helical motion, the method for establishing the geometric equations of constant pitch helices is discussed.

3.Using the velocity method and according to the theory of generalized helical motion of points and lines on any rotational surface, a generalized helix angle mathematical model is proposed, which relates the tangential velocity of a point undergoing helical motion to the angle between the generatrix of the rotating body, as well as the generalized helical line mathematical model. Furthermore, the mathematical models for constant pitch, constant helix angle, and general helical cutting edge curves on conical, spherical, and planar surfaces are derived, as shown in Figure 2.

 

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 2

From Figure 2, the general mathematical model for the helical cutting edge can be obtained:

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 3

where p(x) can be determined based on the shape of the milling cutter’s outer contour, and p(x) takes different values depending on the type of helix:

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 4

For equal-pitch cutting edges,?P is the pitch, and φ0 is the initial angle.

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 5

β is the angle between the helix and the generator of the cutter’s rotational body.

The bottom cutting edge curve of a ball-end end milling?cutter mainly includes three forms: straight cutting edge, equal helix angle edge, and orthogonal helical edge (equal pitch edge).

① A straight cutting edge refers to the cutting edge along the axial direction of the cutter’s ball-end portion being in a “straight line” shape. The straight cutting edge has a simple shape and is easy to sharpen, but during machining, it tends to have poor cutting stability due to sudden engagement and disengagement, and the cutting speed at the top of the edge is zero, which can lead to the formation of built-up edge at the top of the cutting edge. Therefore, in actual production, the bottom cutting edge of ball-end end milling?cutters often uses a helical cutting edge, as shown in Figure 3.

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 6

Based on the first fundamental form of the spherical surface, the equation for the equal helix angle helical cutting edge on the ball-end portion is obtained:

 

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 7

Where R? is the parameter and β is the helix angle. When the cutting edge curve is at the top of the ball-end mill, i.e., R = R?, the above equation does not hold, and a separate smooth curve that connects to the vertex needs to be designed.

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 8

An orthogonal helical cutting edge refers to the intersection line between the orthogonal helical surface formed by the straight generatrices always perpendicular to the axis of the mill and the spherical surface. Based on the equation of the spherical surface and the equation of the orthogonal helical surface, the equation for the orthogonal helical cutting edge is obtained:
What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 9

Here, β represents the helix angle of the circumferential cutting edge, θ is the parameter, with 0 ≤ θ ≤ tanβ.

 

Mathematical Model of Radial Section Lines for end milling?Cutters

 

The actual chip flute of a end milling?cutter is produced by the grinding wheel moving in a helical path around the cutter’s axis, resulting in a space helical surface. The shape of the radial section line is influenced by the shape of the grinding wheel, its relative position and posture to the cutter, and the relative motion trajectory, making it difficult to precisely describe the section line shape with a mathematical model.

 

To simplify the calculation, during the parametric modeling of the cutter, the chip flute section line is divided into several parts: the cutting face, the flute bottom, the transition face, and the back face. The cutting face is simplified to a straight line segment, the flute bottom and the transition face are simplified to two arcs, and the back face is simplified to a straight line segment. Among these, the arc representing the flute bottom is tangent to the straight line segment of the cutting face, the core circle, and the transition face. The transition face is tangent to both the arc of the flute bottom and the straight line segment of the back face, as shown in Figure 4.

What is the Three-Dimensional Parametric Design of Cemented Carbide End Mills? 10

 

Research Status of Parametric Design Software for Integral end milling?Cutters

Parametric design software for integral end milling?cutters requires a user-friendly human-machine interface as well as the capability to display and store three-dimensional models of the cutters. Currently, there are mainly two development approaches: secondary development technology based on existing 3D CAD software and development technology based on the OpenGL graphics interface.

By utilizing the secondary development interfaces provided by software such as UG, SolidWorks, CATIA, Pro/Engineer, and AutoCAD, and calling library functions for modeling, transformation, and Boolean operations, the parametric design of end milling?cutters can significantly reduce the programming difficulty of the software system. To date, universities such as Shandong University, Southwest Jiaotong University, Northwestern Polytechnical University, Harbin University of Science and Technology, Xihua University, Northeastern University, and Xiamen University have conducted extensive research on the parametric design of end milling?cutters based on secondary development technology of 3D CAD software.

Parametric Design of Cutters Based on UG Secondary Development Technology

Shandong University has established a parametric design system for solid carbide end milling?cutters based on the grinding and manufacturing process of the cutters. They used UG/Open MenuScript to create system menus, UG/Open UIStyler to create a user interface in the UG style, and UG/Open GRIP along with UG/Open API for secondary development functions to create the three-dimensional solid model of the end milling?cutter. They compiled the program using VC++ and completed the development. Subsequently, they studied the modeling methods for detailed structures such as the tip radius and relief grooves and completed the development of two-dimensional engineering drawings. They also established three-dimensional models for milling cutters with unequal pitch. Northeastern University, based on the theory of helical lines and helical surfaces, completed the parametric design of end milling?cutters and forming cutters for machining chip flutes after classifying and analyzing the characteristics of CNC helical milling cutters. Northwestern Polytechnical University conducted parametric design for indexable cutters and flat-end end milling?cutters. Harbin University of Science and Technology established mathematical models for the helical lines and chip flute section lines of ball-end end milling?cutters and carried out parametric design for integral ball-end end milling?cutters. Xiamen University added a model for relief grooves, achieving the design of tapered ball-end milling cutters.

Parametric Design of Cutters Based on SolidWorks Secondary Development Technology

Xihua University and others, to meet the needs of Zigong Cemented Carbide Co., Ltd., have developed an object-oriented three-dimensional parametric cutter CAD system using SolidWorks as the development platform and VC++ as the development tool. By utilizing SolidWorks API for secondary development functions, combining dynamic link library technology, Oracle database technology, and ADO (ActiveX Data Objects) database connection technology, and based on the cross-sectional model of end milling?cutters, they have achieved parametric design for chip flutes, four-edge ball-end end milling?cutters, and indexable ball-end end milling?cutters.

Parametric Design of Cutters Based on CATIA Secondary Development Technology

Southwest Jiaotong University, with the assistance of CATIA/API functions and OLE Automation technology, has chosen Visual Basic (VB) as the development tool to develop a parametric design system for end milling?cutters. This system can realize parametric design for five major types of end milling?cutters, including ball-end end milling?cutters, conventional end milling?cutters, CNC end milling?cutters, high-speed end milling?cutters, and end mills. It can also achieve parametric modeling of solid blanks, cylindrical teeth, ball teeth, end teeth, transition teeth, and other detailed cutter structures.

Parametric Design of Cutters Based on AutoCAD Secondary Development Technology:

Northeastern University has chosen VB as the development tool for secondary development of AutoCAD, completing the development of standardized CAD/CAPP software. This software uses a method of disassembly and simplification, modularizing the structural features of end milling?cutters, and achieving computer-aided design for titanium alloy machining end milling?cutters through the invocation of various sub-modules.

Parametric Design of Cutters Based on Pro/E Secondary Development Technology

Lanzhou University of Technology has used the Pro/Toolkit tool for secondary development of Pro/E. Based on the mathematical models of the cutting edge curve, peripheral flute surface, peripheral relief surface, relief groove surface, and the main spiral?slot, relief surface, and spiral secondary groove surface of the ball-end end milling?cutter, they have achieved parametric design of the ball-end end milling?cutter by using surface merging, arraying, and solidification techniques. Tianjin University of Technology and Shanghai Jiao Tong University have established a parametric design system for two-tooth ball-end end milling?cutters, which includes design tools for the cutter body, chip flute, peripheral relief angle, end tooth rake angle, standard Gash, and end tooth relief angle.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看| 欧亚久久日韩av久久综合-国产性感美女色诱视频-色噜噜人妻丝袜av先锋影院先-二次元中文字幕色在线| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 日本一区二区三区四区高清-91久久香蕉国产熟女-久久精品99国产日本精品-国产粉嫩一区二区三区在线观看| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 熟妇女人妻丰满少妇中文-最新国产成人在线网站-亚洲性日韩精品一区二区三区-亚洲免费熟女做爰视频| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 青青草免费视频手机版-男人天堂欧美日韩在线-成人黄色av在线免费看-超短裙女教师在线观看| 日本a亚洲中文字幕永远-美女极度色诱视频国产-国产熟女另类激情在线-高潮少妇高潮少妇av| 日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 蜜臀网站视频在线播放-四虎午夜福利视频在线观看-黄色国产精品福利刺激午夜片-亚洲精品国产成人av| 五月激情综合网俺也去-美欧日韩一区二区三区视频-午夜看片福利在线观看-色老板在线免费观看视频日麻批| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 精品少妇人妻av蜜桃-成年人网站在线免费播放不卡-免费黄色片成人国产精品-蜜桃中文字幕在线视频| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 亚洲国产综合成人久久-日本一区二区三区精彩视频-激情四射五月天亚洲婷婷-人妻高清视频一区二区三区| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 天堂亚洲国产av成人-野花视频在线观看免费-在线播放h视频的网站-僧侣交合的夜晚在线观看| 国产亚洲精品第18页-久久精品理论午夜福利-99久久91热久久精品免费看-国产成人精品国产成人亚洲| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 亚洲天堂av中文在线-亚洲精品有码中文字幕网络-在线播放国产一区二区不卡-香港毛片免费观看视频| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 久久精品亚洲精品毛片-国产精品白丝在线播放-日韩国产欧美综合第一页-亚洲三a免费观看网站| 日韩成人深夜免费在线观看-成人av一区二区在线播放-日韩无套内射免费精品-国产精品一区白嫩在线观看| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 国产在线一区二区三区不卡-久久精品女人毛片水多国产-无人区一码二码三码四码区免费-日韩亚洲国产成人在线| 国产成人自拍视频精品-丝袜美腿亚洲一区二区刘亦菲-91精选国产在线视频-欧洲美熟女乱又伦免费| 国产精品一区二区白浆视频-网红厕所天天干夜夜操a-日韩殴美精品一区二区-国产成人一区二区三区精品| 亚洲中文字幕五月五月婷-极品毛片av一区二区三区-欧美精品天堂一区二区不卡-精品一区二区不卡在线播放| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 日韩黄片av在线免费观看-久久精品国产亚洲av色哟哟-亚洲第一中文字幕少妇-91久久精品国产性色tv| 免费国产精品黄色一区二区-日本熟女五十路六十路熟女-国产日韩欧美另类在线综合-亚洲一区二区中文字幕无线乱码|