Abbildung 1: Vereinfachtes Modell der Spanbildung
W?hrend des Bearbeitungsprozesses erf?hrt das abgetragene Material eine plastische Verformung und Scherung innerhalb der Scherebene und wird je nach Eigenschaften des Werkstückmaterials in langen oder kurzen Spanformen ausgesto?en. In der Scherzone des Bearbeitungsprozesses wird eine erhebliche Menge Energie verbraucht. Bei der Bearbeitung inkompressibler Materialien ?ndert die Verformung des Materials innerhalb der Scherebene sein Volumen nicht. Unter der Annahme, dass es sich bei der Verformung um eine einfache Scherung handelt und ein Stapel von Materialschichten parallel zur Scherebene angeordnet wird, kann die Spanbildung als Scherprozess dieser Materialschichten angesehen werden.
Materialeigenschaften und Spanbildung
Zahlreiche Faktoren beeinflussen die Spanbildung, insbesondere die Eigenschaften des Werkstückmaterials. Metallschneidende Prozesse beinhalten eine plastische Verformung des Werkstückmaterials, gefolgt von einer Scherung. Dabei spielen elastische und plastische Materialverhalten eine entscheidende Rolle. Verschiedene Werkstückmaterialien weisen unterschiedliche Kombinationen von Scherfestigkeit und Duktilit?t auf. Die Duktilit?t des Werkstückmaterials bezieht sich auf das Ausma?, in dem es verformt werden kann, bevor es bricht (siehe Abbildung 2). Je h?her die Duktilit?t des Werkstückmaterials ist, desto l?nger sind die Sp?ne. Als Faustregel gilt: Wenn die Duktilit?t des Materials etwa 251 TP3T übersteigt, sind die Sp?ne lang bis sehr lang.
Abbildung 2: Einfluss plastischer und elastischer Eigenschaften des Werkstückmaterials auf die Spanbildung.
Einige Werkstückmaterialien erzeugen lange Sp?ne; Einige produzieren lange und duktile Sp?ne, w?hrend andere kurze Sp?ne erzeugen. Diese Methode wird auch im ISO-System zur Klassifizierung verschiedener Arten von Werkstückmaterialien verwendet. Da jede ISO-Gruppe (P, M, K, N, S und H) vorhersehbare Sp?ne erzeugt, müssen die Auswahl der Werkzeuge und Schnittbedingungen zum Materialverhalten passen. Die ISO-Gruppe P (Stahl) umfasst Werkstoffe mit relativ hoher Duktilit?t und Neigung zur Bildung langer Sp?ne. Es müssen geeignete Vorsichtsma?nahmen getroffen werden, um die akzeptable Form und L?nge der Chips beizubehalten.
Die ISO-Gruppen K (Gusswerkstoffe) und H (geh?rtete St?hle) umfassen Werkstoffe mit geringerer Duktilit?t, die kurze Sp?ne erzeugen. Dies vereinfacht die Spankontrolle. Zu den ISO-Gruppen M (Edelstahl), S (Superlegierungen) und N (Nichteisenmaterialien) geh?ren Materialien mit relativ geringer Duktilit?t, aber spürbarer Viskosit?t. Diese Materialien bilden sogenannte ?Built-up-Edge“-Chips.
Abbildung 3: Klassifizierung der Chipmorphologie und -formen.
Klassifizierung der Chipmorphologie und -formen
Chips k?nnen von sehr lang bis sehr kurz klassifiziert werden, wobei bei idealen Chips jegliche Extreme vermieden werden. Zu kurze Sp?ne k?nnen dazu führen, dass die Bearbeitung unterbrochen wird, was zu vorzeitigem Abplatzen der Werkzeugkante und einer verkürzten Werkzeuglebensdauer führt. Aus Sicht der Standzeit sind l?ngere Sp?ne vorzuziehen. Lange und gleichm??ig geformte Sp?ne führen zu weniger Mikrovibrationen w?hrend des Bearbeitungsprozesses und führen zu einer besseren Oberfl?chenqualit?t. Aus Sicht des Schneidprozesses selbst sind lange Sp?ne jedoch nicht ideal. Sie k?nnen die Maschine, das Werkstück und die Werkzeuge besch?digen und unsichere Bedingungen für die Bediener schaffen. Sie k?nnen auch zu Auswurfproblemen in Sp?nef?rderern führen und so zu Produktionsausf?llen führen.
Abbildung 4: Klassifizierung der Chips, von lang nach kurz. Von links nach rechts: Ribbon, Tangled, Helical, Long Helical, Helix, Ideal Helix, Helical Pipe, Long Comma und Short Comma Chips.
Kurze Sp?ne beseitigen Auswurfprobleme, deuten jedoch auf intermittierendes Schneiden hin, was zu einer kürzeren Werkzeuglebensdauer (aufgrund von Absplitterungen an der Werkzeugkante) und zu Mikrovibrationen führen kann, die die Oberfl?chenqualit?t verschlechtern. Spiralf?rmige Sp?ne sind weder zu lang noch zu kurz, was einen Idealzustand darstellt und die beste M?glichkeit für optimale Schneidvorg?nge bietet.
Ideale Spanbildung, kurze Spiralform
Geringer Strombedarf
Geringe Belastung der Schneidkanten
Geringe Schnittkraft. Leichter auszuwerfen
Vermeiden Sie sehr kurze Chips
Hoher Leistungsbedarf
Hohe Beanspruchung der Schnittkanten
Kann zu Durchbiegungen und Vibrationen des Werkzeugs oder Werkstücks führen
Vermeiden Sie lange und bandf?rmige Sp?ne
Schwer auszuwerfen
Gef?hrlich für Bediener
Kann nachschneiden und das Werkstück oder Werkzeug besch?digen