色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

A face milling cutter is primarily used for machining flat surfaces. It features multiple cutting teeth engaged in cutting simultaneously, offering stable operation.If we want to choose a face mill cutter, we need to follow these principles below.

 

Structural Types

carbide?face milling cutters can be categorized into three types: integral welding type, mechanical clamping ?type, and indexable type.

The diagram 1 below illustrates an integral welding type face milling cutter. This type has a compact structure and is relatively easy to manufacture. However, if the teeth are damaged, the entire milling cutter must be discarded, so its usage has decreased.

welded face mill cutters and clamped face mill cutters

As shown in the above diagram is the mechanical clamping welding type face milling cutter. This cutter welds carbide?inserts onto small cutter heads, which are then mechanically clamped into slots on the cutter body. When the inserts are worn out, they can be replaced with new ones, thereby extending the cutter body’s service life.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 2

As shown in Figure 2, the commonly used indexable face milling cutter consists of components such as the cutter body (5), insert (1), tightening screws (3), cutter blade (6), wedge block (2), and eccentric pin (4). The insert (1) is clamped onto the cutter body using the wedge block (2) and tightening screws (3). Before tightening the screws, the eccentric pin (4) is rotated to adjust the axial runout of the insert within a specified range at the axial support point. Once the cutter blade (6) is mounted on the insert, it is clamped in place by the wedge block (2) and tightening screws (3). The eccentric pin (4) also prevents excessive axial forces on the insert during cutting, thereby preventing axial movement.

 

Compared to high-speed steel face milling cutters, carbide?face milling cutters offer higher milling speeds, better processing efficiency, and improved surface quality. They are capable of machining workpieces with hardened surfaces and layers, demonstrating significant advantages in enhancing product quality and processing efficiency.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 3

Face Milling Cutter Main Structural Parameters

(1) Diameter and Number of Teeth

Diameter and number of teeth are the two main structural parameters of a face milling cutter. To accommodate different cutting requirements, face milling cutters of the same diameter are classified into coarse, medium, and fine types based on the number of teeth. Taking a 100 mm diameter cutter as an example, the number of teeth for coarse, medium, and fine types are 5 teeth, 6 teeth, and 8 teeth respectively.

 

(2) Geometric Angles

Indexable face milling cutters have key geometric angles including the lead angle κr, rake angle γp, and clearance angle γf. The lead angle κr is available in 45°, 60°, 75°, and 90° variants, with 75° being the most commonly used. When machining flat surfaces with shoulders or thin-walled workpieces, a 90° lead angle is typically chosen.

The rake angle γp and clearance angle γf can be combined into positive rake, negative rake, and positive-negative rake configurations. Positive rake angles are used for machining general materials; for instance, γp=7° and γf=0° are common for milling mild steel and cast iron, while γp=18° and γf=11° are used for milling aluminum alloys. Negative rake angles are employed for machining cast steel and hard materials, often set at γp=-7° and γf=-6°. Positive-negative rake angles offer good impact resistance and chip removal properties, suitable for milling general steel and cast iron, commonly used on machining centers with values like γp=12° and γf=-8°.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 4

How to Select a Face Milling Cutter?

Selection of Face Milling Cutter Diameter

(1) When the machining area is not large, it is important to choose a tool or milling cutter with a diameter larger than the width of the plane. This allows for single-pass face milling. When the width of the face milling cutter is 1.3 to 1.6 times the width of the machining area, it effectively ensures proper chip formation and removal.

 

(2) For machining large surface areas, it is necessary to select a milling cutter with an appropriate diameter and perform multiple passes for face milling. Due to machine limitations, cutting depth, width, and the dimensions of the cutter and inserts, the diameter of the milling cutter may be constrained.

 

(3) When machining small plane areas or dispersed workpieces, a smaller diameter end mill should be selected for milling. To achieve optimal efficiency, the milling cutter should have contact with the workpiece equal to 2/3 of its diameter, which means the milling cutter diameter should be 1.5 times the width of the cut. Properly using this ratio of cutter diameter to cutting width ensures the milling cutter approaches the workpiece at an ideal angle. If the machine’s power cannot sustain cutting at this ratio, axial cutting thickness can be divided into two or more passes to maintain the ratio of cutter diameter to cutting width as much as possible.

 

Selection of Number of Teeth on the Milling Cutter

When selecting a milling cutter for machining, the number of teeth is an important consideration. For example, a coarse-toothed milling cutter with 6 teeth has a diameter of 100 mm, whereas a fine-toothed milling cutter with 8 teeth also has a diameter of 100 mm. The density of teeth affects both production efficiency and product quality. Dense teeth improve efficiency and quality but may hinder chip removal. Depending on the diameter of the teeth, they can be categorized as sparse teeth, fine teeth, and dense teeth.

 

Sparse teeth are used for rough machining of workpieces, with 1 to 1.5 inserts per 25.4 mm diameter, providing ample space for chips. Such tools are suitable for continuous chip formation in soft materials, using long blades and wide cuts. Dense teeth are advantageous for stable machining conditions, typically used for rough machining of cast iron, shallow and narrow cuts in high-temperature alloys, and when chip space is not required.

Dense teeth are applied in fine milling, with axial cutting depths ranging from 0.25 to 0.64 mm per tooth, minimizing cutting loads and power requirements, suitable for machining thin-walled materials.

 

Selection of Milling Inserts

The choice of milling inserts for flat milling is a critical factor to consider. In certain machining scenarios, pressed inserts are more suitable, while in others, ground inserts are preferred.

For rough machining

Pressed inserts are often preferred as they lower machining costs. Pressed inserts have lower dimensional accuracy and edge sharpness compared to ground inserts. However, they offer better edge strength, making them suitable for rough milling tasks. They can withstand higher impact and accommodate larger depths of cut and feed rates. Pressed inserts typically feature chip grooves on the front face, reducing cutting forces and friction with the workpiece and chips, thereby lowering power requirements. However, their surface finish is less compact than ground inserts, resulting in varying heights among insert tips on the milling cutter body. Due to their cost-effectiveness, pressed inserts find widespread use in production.

 

For fine milling

Ground inserts are preferable due to their superior dimensional accuracy. This high precision ensures precise positioning of the cutting edge during milling, leading to higher machining accuracy and lower surface roughness values. Moreover, the trend in ground milling inserts for fine machining includes forming large positive rake cutting edges with chip grooves, allowing the inserts to handle small feed rates and depths of cut effectively. In contrast, carbide?inserts without sharp rake angles may experience friction with the workpiece during fine machining with small feed rates and depths of cut, reducing tool life.

Leave a Reply

Your email address will not be published. Required fields are marked *

中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 精品国产亚洲av蜜臀-欧美亚洲伦理在线视频-久久亚洲国产成人影院av-国产精品99蜜臀久久不卡二区| 正在播粉嫩丰满国产极品-国产成人午夜福利av在线-国产精品自拍自在线播放-一区二区三区四区日本视频| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 亚洲av乱码久久观看-亚洲爆码一区二区三区-91亚洲国产精品视频-黑丝美女被爆操流白浆| 激情视频在线观看国产一区-日韩高清在线视频一区免费观看-国产白丝精品在线观看-色偷偷伊人大杳蕉综合网| 少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 亚洲国产精品不卡毛片-青青青视频手机在线观看-在线视频中文字幕人妻-亚洲永久精品免费在线| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 久久中文字幕人妻淑女-日韩欧美亚洲一中文字幕-日本免费一区二区三区视频-亚洲精品乱码免费精品乱码| 人人澡人人妻人人干-亚洲中国麻豆美女av-日本淫妇一区二区三区-美女午夜福利偷偷要网站| 无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 午夜亚洲国产色av天堂-色天天综合色天天久久191-国产精品久色婷婷不卡-日韩欧美中文字幕在线韩| 免费观看一区二区av蜜桃-免费一级特黄久久大片-每日更新日韩中文字幕有码-97视频在线观看午夜| 青草精品在线视频观看-色呦呦在线观看中文字幕-国产一区二区日本在线观看-草青青在线视频免费观看| 91精品欧美人妻一区二区-日本女人体内射精视频-欧美一级一片内射少妇-久久99国产综合精品女人| 亚洲乱色熟女一区二区三区蜜臀-亚洲精品午夜在线免费观看-综合成人亚洲偷自拍色-色综合久久精品中文字幕| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| av天堂免费中文在线-91麻豆国产综合精品久久-日韩av在线播放高清-台湾佬自偷自拍情侣在线| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 久久97久久97精品免视看秋霞-黄片av毛片在线免费观看-日韩av高清不卡免费观看-成人午夜福利视频观看地址| 97人妻一区二区精品视频-99久热精品视频在线观看-韩国av福利在线观看-亚洲熟妇自偷自拍另类| 日本av在线一区二区三区-日韩人妻在线中文字幕-亚洲国产一区二区三区久久-国产日本一区二区三区久久| 成人精品av一区二区三区-日本久久精品在线视频-亚洲精品自拍资源在线播放-青青草原在线视频资源| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 日韩精品成人一区二区三区-亚洲综合中文字幕第一页-久久伊人亚洲中文字幕-花季传媒视频无限制观看| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 亚洲av色香一区二区三含羞草-av毛片在线观看网站-中文字幕一区二区人妻中文字-91精品人妻日韩一区二区| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 欧美亚洲国产另类在线-九九热精品在线免费视频-日本高清有码在线一区-青草第一视频在线观看| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 久久精品蜜桃一区二区三区-久久99亚洲精品久久-激情文化变态另类快播-国产成人免费永久在线平台| 日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av|