色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The so-called powder metallurgy method is to make a powder of the raw material of the alloy to be produced, and then mix the powders in an appropriate amount and pressurize and solidify into a certain shape. These powder pieces will be placed in a reducing atmosphere (for example, hydrogen), heated and sintered to form an alloy. This is a metallurgical method that is completely different from the previous casting method.
The sintering referred to herein can be simply defined as the promotion of agglomeration of metal crystal grains by the action of pressurization and warming. We apply a certain amount of pressure to the powder with the alloy composition to compact it. At high temperatures, the intimately contacted powders stick to each other and gradually fill the voids to form a high density alloy. The heating temperature at this time is the melting temperature of the low melting component in the alloy component. Thus, the alloy ingot is sintered at a temperature below the melting point of the entire powder component. This method is similar to the method of combining the two processes of smelting and casting, and its properties are close to those of cast alloys. But from a metallographic point of view, it should be a branch of alloy castings.
Cemented carbide is manufactured by this powder metallurgy method. Generally, powders such as tungsten, carbon, cobalt, titanium, and cerium are used for batch mixing, and then pressed and sintered to form an alloy. Thus, the product of this metallurgical process is also referred to as a sintered cemented carbide or a cemented carbide alloy. In recent years, powder metallurgy methods have developed very rapidly. Cemented carbides, oil-bearing alloys, electrical contacts, metal bonded diamond wheels, and special decorative metal products are all manufactured by this powder metallurgy method.
For example, the pressed semi-finished product of 30 mm in length is now heated to 1000-1400 ° C. The volume change of the pressed product at about 30 ° C for about 5 minutes is shown in Figure 2-2. Shrinkage generally begins at 1150 ° C. In the case of 6% Co, the shrinkage proceeds very regularly, ending at approximately 1320 ° C. In the case of 10% Co, at 1180-1200 ° C, the contraction is temporarily interrupted. As the temperature continues to rise, the shrinkage proceeds rapidly, and when the temperature reaches 1300 ° C, it tends to balance.

The Principle of Powder Sintering in Metallurgy 1

Thereafter, since the number of contact points of the particles and the contact area is remarkably increased, each of the particles is in a state of easily releasing excess energy (free energy) held by itself. Thus, from about 200 ° C, cobalt begins to diffuse, at which point the first stage of sintering begins. When the temperature rises again, β-Co is converted to γ-Co at around 490 °C. At 600 ° C, carbon begins to diffuse into the cobalt and becomes a mass solution. The finer the tungsten carbide particles, or the better the cobalt-coated tungsten carbide, the faster this diffusion phenomenon will occur. This diffusion has the same effect as applying strong compressive pressure to the compact. However, during the temperature rise, almost no liquid phase is observed at this temperature.
However, near this temperature, the bending strength is significantly increased. Usually, a hardness alloy of 6% cobalt is sintered at a temperature of about 1400 ° C. At this temperature, WC gradually dissolves into the liquid phase, and particularly fine WC dissolves rapidly, and the large WC has large surface energy due to the sharp corner portion. It is round after being dissolved. As a result, the liquid phase portion becomes more and more, and as the reaction progresses toward the direction in which the free energy decreases, the alloy shrinks and the pores gradually decrease. On the other hand, in the portion where the tungsten carbide particles are in contact with each other, the phenomenon of volume diffusion, particularly surface diffusion, continues to occur. There is also the possibility that carbide particles will bond with each other. Further, WC may also locally precipitate from the liquid phase at a portion where the tungsten carbide contacts each other. As a result, various reasons have prompted the growth of tungsten carbide grains, resulting in a dense alignment. However, the temperature is further increased, and when it exceeds 1600 ° C, gas is generated inside the product, causing expansion of the crystal arrangement. It is said that the gas is generated by the presence of impurities such as SiO2. On the contrary, if the temperature is lowered, the WC particles dissolved in the liquid phase are precipitated on the WC particles having small surface energy. Even after the liquid phase disappears into a solid state, the tungsten carbide continues to separate until only 1% remains.

The Principle of Powder Sintering in Metallurgy 2

During the sintering process, the tungsten carbide present in the form of a melt in the cobalt moves a small distance and is bonded to the undissolved tungsten carbide, so that uneven structure such as a cast alloy is not formed. The steel containing a large amount of pearlite is aged and hardened by the precipitation of the carbon melt of the alpha iron. In contrast, during the sintering process, the WC particles act as effective nucleation, so there is no age hardening phenomenon, so that the structure is uniform and very stable, not sensitive to heat treatment, and the hardness does not change even at relatively high temperatures. Figure 2-3 shows the high-temperature hardness of tool steel, high-speed steel, cast alloy, stellite alloy (Co-Cr-W), and WC+Co cemented carbide.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 2020天天操夜夜操-亚洲色图视频在线观看,-亚洲色图专区另类在线激情视频-岛国精品毛片在线观看| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 狠狠久久五月综合色和啪-日韩精品欧美一区二区三区软件-亚洲女同精品一区二区久久-国产传媒在线视频免费观看| 国产一级片内射在线视频-亚洲少妇无套内射激情-成人午夜性色福利视频-夜夜嗨视频无套实战丰满少妇| 在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 九九热在线精品视频免费-日韩高清免费在线视频-熟女快要高潮了在线观看-亚洲午夜福利视频一级| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 手机亚洲av网站在线-怡红院亚洲第一综合久久-国产精品日本一区二区在线看-粉嫩蜜臀人妻国产精品| 日韩精品中文字幕免费人妻-欧美精品在线一区二区三区-女人张开腿让男人捅爽-99久久中出中文字幕| 久99久热这里只有精品-日韩av一区二区三区播放-天堂日韩av在线播放-中文字幕被侵犯的人妻| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 中文字幕乱码亚洲精品-亚洲伊人久久大香线蕉-麻豆视传媒视频短免费网站-极品美女被后入干出水视频| 人妻中文字幕在线观看-日本精品一级影片欧美精品-91偷自国产一区二区三区-女人高潮被爽到呻吟在线| 99精品国产在热久久婷婷人-黄色av一区二区在线-精品一区二区三区中文字幕在线-久久91国产人妻熟女| 在线精品日韩一区二区三区-国产免费人成网站在线观看-白白发布视频一区二区视频-乱妇乱女的熟妇熟女色综合| 久久精品国产欧美日韩热-久久综合色一综合色88-特西西日本午夜人体艺术-97中文字幕在线视频| 91免费视频国产自拍-亚洲av 综合一区二区人妖-青青草草青青在线播放-欧美精品免费一区二区二区| 亚洲天堂成人免费视频-青草精品在线观看视频-国产三级在线观看国产精品-黄色日本黄色欧美视频| 亚洲视频第一页在线观看-最新中文字幕国产精品-中文人妻熟妇人伦精品熟妇-国产福利91在线视频| 亚洲91精品麻豆国产系列在线-丝袜美腿诱惑一区二区视频-日本人妻中文一区二区-男女无遮挡啪啪啪国产| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 美女被狂躁到高潮视频-国产熟女精品自拍视频-亚洲中文字幕在线精品一区-成人在线中文字幕电影| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 午夜亚洲国产色av天堂-色天天综合色天天久久191-国产精品久色婷婷不卡-日韩欧美中文字幕在线韩| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 国内精品欧美久久精品-国产极品尤物美在线观看-日本经典视频一区二区三区在线-国模91九色精品二三四| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区|