色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The oxidation with temperature in the cutting area can reach 1000°C significantly reduces the hardness and strength of the carbide, greatly shortening the tool’s lifespan and severely affecting the performance of carbide tools. The author of this paper investigates the high-temperature oxidation resistance and high-temperature performance of different carbide compositions, focusing on adjusting the cobalt content, WC grain size, and TaC/NbC/TiC additives. The following conclusions were drawn from this study.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 2

The Effect of Cobalt Content

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 3

Figure 3 shows the microstructure after oxidation of carbides?with different cobalt contents (all WC materials are WC-1). As the cobalt content increases, the microstructure of the carbide?oxides changes significantly. The oxide of the WC-6%Co carbide?has more and larger pores, the pores in the oxide of the WC-10%Co carbide?are significantly reduced, and the oxide of the WC-14%Co carbide?has virtually no large pores.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 4

Figure 4 shows the oxidation weight gain curves of carbides?with different cobalt contents. As the cobalt content increases, the oxidation weight gain of the carbides decreases sequentially. At 900°C, the oxidation weight gain of WC-6%Co, WC-10%Co, and WC-14%Co carbides are 11.92%, 11.46%, and 11.26%, respectively. Compared to WC-6%Co carbide, the oxidation weight gain of WC-10%Co and WC-14%Co carbides?at 900°C decreased by 3.8% and 5.5%, respectively. Therefore, although increasing the Co content can improve the high-temperature oxidation resistance of carbides, the improvement is not significant.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 5

Table 3 lists the oxidation reaction equations of each component in the carbide?and their Gibbs free energy. It is well known that during the oxidation of carbides, the oxidation of WC to WO3 results in significant volume expansion. The oxide WO3 is loose, porous, and volatile, producing volatile gases such as CO2, which provide more pathways for the oxidation diffusion process, thereby exacerbating the oxidation of the carbide. Although the binder phase is more prone to oxidation than the hard phase, the oxide formed from the binder phase is the relatively dense CoWO4, which can slow down the oxidation diffusion process of the carbide. Therefore, with the increase in cobalt content, more CoWO4 and less WO3 are formed, resulting in a denser microstructure of the oxides and consequently improving the high-temperature oxidation resistance of the carbide.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 6

Table 4 shows the room temperature hardness and high-temperature hardness of carbides?with different cobalt contents. At room temperature, the more cobalt content, the lower the hardness of the carbide. When the temperature rises to 800°C, the hardness of the carbides decreases significantly, with the rate of decrease reducing as the cobalt content increases. At 800°C, the hardness of carbides with higher cobalt content is actually higher than that of carbides with lower cobalt content.

 

Both the hard phase and the binder phase exhibit some thermal expansion at high temperatures, with the binder phase experiencing greater thermal expansion and generating larger stress, which offsets some of the load force. This is one of the reasons why the high-temperature hardness of the carbide?increases with the increase in cobalt content.

The Effect of WC Grain Size

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 7

Figure 6 shows the oxidation weight gain curves of 4#, 5#, and 6# carbides?prepared with WC of different Fischer particle sizes. From room temperature to 825°C, the oxidation weight gain curves of the three carbides with different WC grain sizes overlap; however, in the range of 825-900°C, the finer the WC grains, the less the oxidation weight gain of the carbides. At 900°C, the oxidation weight gains of 4#, 5#, and 6# carbides?are 9.18%, 8.67%, and 8.20%, respectively. Compared to the 4# carbide, the oxidation weight gain of the 5# and 6# carbides?at 900°C decreased by 5.6% and 10.7%, respectively. Therefore, under the same Co content, refining the WC grains can improve the high-temperature oxidation resistance of carbides.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 8

Figure 7 shows the XRD diffraction patterns after oxidation of carbides?with different WC grain sizes. Since the compositions of 4#, 5#, and 6# carbides?are the same, there is no significant difference in their oxidation products. Therefore, the diffraction patterns of the oxides of the three carbides?with different WC grain sizes are essentially identical.

 

The Oxidation Resistance and hardness Differences of Carbides with Different WC Grain Sizes

The differences in the oxidation resistance of carbides?with different WC grain sizes can be mainly attributed to the following two points:

In the case of a uniform carbide?structure, finer WC grains result in more phase boundaries between WC and the binder phase. The finer WC grains are better encapsulated by the binder phase, and the oxidation products of the binder phase can, to some extent, hinder the oxidation diffusion process, thereby improving the high-temperature oxidation resistance of the carbide.

Finer WC grains have fewer grain boundary defects and smaller grain boundary voids between the WC grains, which correspondingly reduce the oxidation diffusion channels, thus enhancing the high-temperature oxidation performance of the carbide.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 9

Table 5 shows the room temperature hardness and high-temperature hardness of carbides?with different WC grain sizes. At room temperature, the finer the WC grains, the higher the hardness of the carbide. When the temperature rises to 800°C, the hardness of the carbides decreases significantly, and the rate of decrease in high-temperature hardness increases as the WC grain size decreases. Clearly, although the room temperature hardness of the carbide?increases as the WC grain size decreases, the high-temperature hardness becomes lower.

 

The Effect of TaC/NbC/TiC Additives

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 10

Figure 8 shows the oxidation weight gain curves of carbides?with different carbide additives (all WC materials are WC-3). The oxidation weight gain curves and oxide diffraction patterns of WC-Co and WC-Co-TaC carbides?are basically the same, with oxidation weight gains of 10.58% and 10.20% at 900°C, respectively. Among the four carbides, WC-Co-NbC carbide?has the highest oxidation weight gain, while WC-Co-TiC carbide?has the lowest oxidation weight gain, with oxidation weight gains of 11.68% and 9.05% at 900°C, respectively.

?????

Figure 9 shows the XRD diffraction patterns of carbides?with different carbide additives after oxidation. The oxidation of the carbides produces corresponding oxides.

In WC-Co carbides, the added TaC, NbC, and TiC all exist in the form of W-containing solid solutions. The (Nb,W)C solid solution oxidizes earlier than WC and has many phase boundaries with WC. Without the protective “encapsulation” of the binder phase, the oxidation of the solid solution promotes the oxidation of WC, thereby accelerating the oxidation of the carbide. The oxidation weight gain of WC-Co-TaC carbide?is the same as that of WC-Co carbide. This is because the (Ta,W)C solid solution reacts simultaneously with WC, and since the hard phase WC is the main component, the loose and porous WO3 phase predominantly controls the oxidation rate of the carbide. Therefore, the addition of TaC does not significantly affect the high-temperature oxidation resistance of the carbide.

In summary, under the same conditions of grain size and cobalt content, the addition of TaC has no significant effect on the high-temperature oxidation resistance of the carbide. However, the addition of NbC significantly reduces the high-temperature oxidation resistance of the carbide, with a reduction of 10.4%, while the addition of TiC significantly improves the high-temperature oxidation resistance of the carbide, with an improvement of 14.5%.

The Effects of 3 Elements on the High-Temperature Oxidation Resistance and Hardness of Carbides 11

Table 6 shows the room temperature hardness and high-temperature hardness of carbides?with different carbide additives. At room temperature, the hardness of the carbides with TaC, NbC, and TiC additives is comparable to that of the WC-Co carbide. When the temperature rises to 800°C, the high-temperature hardness of the carbides with TaC, NbC, and TiC additives is higher than that of the WC-Co carbide, and the rate of decrease in high-temperature hardness is significantly reduced.

It is well known that solid solutions exhibit good red hardness and provide structural support to the overall carbide, helping it maintain high hardness under high-temperature conditions. Additionally, the solid solutions contribute to solid solution strengthening of the Co phase, which increases the hardness of the Co phase. Therefore, the addition of TaC, NbC, and TiC results in carbides?exhibiting good high-temperature hardness.

???????

This study investigated the effects of cobalt content, WC grain size, and types of solid solutions on the high-temperature oxidation resistance and high-temperature hardness of carbides. The conclusions are as follows:

1.Increasing the cobalt content improves the high-temperature oxidation resistance of the carbide?and significantly increases the high-temperature hardness.

2.Reducing the WC grain size enhances the high-temperature oxidation resistance of the carbide?but significantly reduces the high-temperature hardness.

3.Compared to WC-Co carbides, the addition of TaC has no significant effect on the high-temperature oxidation resistance of the carbide, the addition of NbC decreases the high-temperature oxidation resistance, and the addition of TiC significantly improves the high-temperature oxidation resistance. All three additives, TaC, NbC, and TiC, significantly enhance the high-temperature hardness of the carbide.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 亚洲熟女少妇av麻豆-男人一天堂精品国产乱码-欧美精品高清在线播放-亚洲国产午夜福利精品| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 免费人成视频在线观看播放网站-日韩精品久久精品三级-91精品一区二区三区久久蜜桃-中文字幕av久久激情亚洲精品| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 在线三级电影在线观看-在线成人激情自拍视频-日本在线视频播放91-国产精品一区二区男女羞羞无遮挡| 国产精品性色av免费-人妻系列中文字幕一区二区-精品一区二区三区在线日韩-亚洲欧美日韩国产一二三区| 蜜桃视频大全免费观看-国产高清不卡一区二区-亚洲av综合av东京热三区-无套内射激情国产av| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 亚洲av成人午夜福利在线观看-日韩精品成人影院久久久-国产在线高清不卡一区-激情五月另类综合视频| 国产成人午夜精品久久-91久久精品一区二区喷水喷白浆-中文字幕日本人妻99-美女人妻少妇一区二区三区| 熟妇女人妻丰满少妇中文-最新国产成人在线网站-亚洲性日韩精品一区二区三区-亚洲免费熟女做爰视频| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎| 在线十八禁免费观看网站-久久99久国产精品黄毛片色诱-日韩高清av在线观看-亚洲黄香蕉视频免费看| 国产丝袜爆操在线观看-亚洲老熟妇日本五十六十路-亚洲av乱码久久亚洲精品-综合激情四射亚洲激情| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 日韩三级在线视频不卡-国内自拍色第一页第二页-96热久久这里只有精品-日韩精品有码一区二区三区久久久| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 亚洲少妇熟女一区二区三区-熟女熟妇少妇妇女乱熟-一区二区三区不卡国产视频-成人精品一区二区三区综合| 91九色中文在线播放-日韩中文字幕熟女人妻-成人黄色一级在线观看-日本一区二区三区视频在线| 中文字幕日韩精品人妻久久久-午夜福利激情视频在线观看-蜜桃黄网站视频在线观看-国产丰满熟女夜夜嗨av| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 国产精品成久久久久久三级四虎-亚洲成人av在线高清-国产精品一区二区三区自拍-欧美午夜激情视频网站| 精品国产精品久久一区免费式-男女高清无遮挡免费视频-av男人的天堂一区二区三区-免费观看视频网站97| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 四虎精品高清在线观看-日韩有码国产中文字幕-国产一区二区三区亚洲污在线观看-亚洲av永久久无久之码精| 亚洲天堂成人av影院-日韩精品国产一区在线久草-欧美国产另类久久久精品-91午夜精品久久香蕉| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 综合久久少妇中文字幕-亚洲中文波霸中文字幕-免费在线看的av网站-久久狠狠爱亚洲综合影院| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 午夜福利国产在线播放-中文字幕日产乱码久久正宗-亚洲精品成人久久69-99精品国产免费久久|