色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

A mechanical seal is a device that relies on elastic components to pre-tighten the sealing faces of the static and rotating rings, and uses the pressure of the medium combined with the pressure of the elastic components to achieve axial balance, thus ensuring axial face sealing. Figure 1 shows a common type of mechanical seal structure. In the sealing area, the rotating ring and the stationary ring’s faces slide relative to each other. Due to the combined effects of heat, chemicals, physical forces, and mechanical factors, these contact surfaces are most prone to leakage or even damage. The operational condition of the sealing rings determines the performance and lifespan of the mechanical seal, and the performance of the sealing ring materials directly affects its operational condition. Therefore, understanding the performance requirements of sealing materials for mechanical seals and selecting appropriate sealing materials are crucial for ensuring the safe operation of mechanical seals.

 

Requirements for Seal Face Materials in Mechanical Seals

To ensure the proper operation of sealing rings in mechanical seal devices, they are typically configured as a pair consisting of a hard ring and a soft ring with different hardness levels, considering aspects such as wear reduction, corrosion resistance, and prevention of galling. During operation, the sealing rings may come into contact and generate friction when starting, stopping, or experiencing fluctuations in working conditions. Therefore, the material for the hard ring needs to have sufficient strength, rigidity, wear resistance, and thermal conductivity. Friction and fluid shear forces can elevate the temperature of the sealing rings, so the sealing material must exhibit good thermal conductivity, heat resistance, and thermal shock resistance. To ensure a long service life, the sealing ring must also have good corrosion resistance. Additionally, the hard ring should possess good formability and machinability, low density and permeability, and excellent self-lubricating properties. No single material can fully meet all these requirements, so typically, the main performance criteria for sealing materials are defined based on the operating environment, and suitable materials are selected accordingly.

mechanical seal ring

Application of WC-Ni carbide as Mechanical Seal Materials

To ensure the longevity and stable operation of mechanical seal materials, the sliding materials should have appropriate thermal compatibility and thermal conductivity, as well as suitable coefficients of thermal expansion, elastic modulus, and friction factors. WC-Ni carbides are known for their excellent performance in mechanical seals, making them suitable for applications in high-pressure, high-speed, high-temperature, corrosive environments, and media containing solid particles.

Application of WC-Ni carbide?in Mechanical Seal Face Materials 2

Characteristics of WC-Ni carbide

Since the introduction of carbides in the 1920s, cobalt has been regarded as the best binder phase and continues to play a significant role in the preparation of carbides. With the rapid advancement of science and technology, the applications of carbides have expanded, leading to a surge in demand. Due to the scarcity of cobalt resources, scientists worldwide have prioritized cobalt as a strategic material and have been researching ways to reduce or substitute cobalt in carbides. Nickel, being close to cobalt in the periodic table, with similar density, melting point, and atomic radius, can effectively wet and support the hard phase and has lower radioactivity compared to cobalt, making it a common substitute.

The characteristics of WC-Ni and WC-Co carbides during the sintering process are similar. However, due to the different strengthening effects of Ni and Co on the hard phase, WC-Ni may exhibit slightly lower performance in certain aspects compared to WC-Co carbides. By adding a small amount of metal elements to enhance the binder phase, using fine low-carbon WC particles, and employing vacuum sintering processes, WC-Ni carbides with lower porosity and a uniform, fine-grained structure can be achieved. Their hardness, bending strength, and tribological properties can meet or exceed those of WC-Co carbides, while their corrosion resistance is also significantly improved. Additionally, as Ni replaces the radioactive element Co, it provides good radiation protection when used under radioactive conditions. By carefully controlling the total carbon content and grain size of the alloy, and adding appropriate amounts of Mo and Cr, WC-Ni carbides can be produced with non-magnetic properties and excellent physical and mechanical performance, thereby mitigating the effects of special working conditions and environmental factors.

Application of WC-Ni carbide?in Mechanical Seal Face Materials 3

Physical and Mechanical Properties of WC-Ni carbide for Mechanical Seals

WC-Ni carbides are made by mixing WC and Ni powders in a specific ratio, adding a binder, and then pressing and sintering the mixture. With a melting point of approximately 2700°C, WC particles are primarily bonded together during the sintering process through the melting of Ni. At high temperatures, some WC dissolves into Ni, forming a WC-Ni eutectic with a lower melting point than Ni. Consequently, the sintering temperature varies with changes in Ni content and WC grain size. For composite materials, physical parameters such as elastic modulus, coefficient of thermal expansion, Poisson’s ratio, thermal diffusivity, and thermal conductivity can vary based on the proportion and distribution of each phase.

Application of WC-Ni carbide Materials in Mechanical Seal?

Due to their exceptional toughness, rigidity, high hardness, good wear resistance, high bending strength, and high thermal conductivity, both WC-Ni and WC-Co carbides are notable. WC-Ni carbides offer superior corrosion resistance compared to WC-Co alloys and do not emit radiation under neutron exposure, making them suitable for use in mechanical seals operating under high pressure, high speed, high temperature, corrosive media, media containing solid particles, and radioactive environments. Currently, WC-Ni carbides have significant application value in vehicle transmission shaft seals, power shift transmissions, pumps in special operating conditions, and rotary seals for aircraft, as well as in the petrochemical industry and nuclear power seals.

Influence of Microstructure on the Properties of WC-Ni carbides

Application of WC-Ni carbide?in Mechanical Seal Face Materials 4

The unevenness in microstructure can adversely affect the strength of carbides. Minor variations in the binder phase content and distribution, WC grain size, carbon content, and any form of impurity contamination can lead to an uneven microstructure that negatively impacts the mechanical properties of WC-Ni carbides.

Influence of WC Grain Size on the Properties of WC-Ni carbides

WC-Ni carbides use Ni as the binder metal. During the sintering process, Ni melts at the sintering temperature and bonds the WC particles together into a solid mass. These alloys exhibit very high hardness, are difficult to machine, and possess excellent wear resistance. Variations in the processing methods can lead to significant differences in the alloy’s composition and properties, and the morphology of the WC grains can also affect the performance of WC-Ni carbides.

3.2Changes in WC Grain Morphology During Liquid Phase Sintering of WC-Ni carbides

The coarseness of WC grains can significantly affect the bending strength of carbides, while uneven distribution of Ni can lead to brittle fracture of the alloy. To improve the fracture toughness of the product, it is essential to strengthen the interface between WC and the binder phase or to enhance the strength of the binder phase. Therefore, controlling the sintering process and conditions will impact the mechanical properties of WC-Ni carbides.

During sintering, the shape of WC grains in the carbide?is also influenced by shape relaxation and the grain growth process. The higher the ratio of the average intercept length of the binder phase (the average length of each grain intersected by any testing line on a cross-section) to the WC grain size, the less impact it has on the shape of the WC grains, resulting in a more equiaxed grain morphology.

Application of WC-Ni carbide?in Mechanical Seal Face Materials 5

Effect of Binder on Temperature Residual Stress in WC-Ni carbides

When the content of the metallic binder Ni in WC-Ni alloy materials is relatively high, the compressive stress in fine WC grains is greater than that in coarse grains. This is because, with a constant WC content, the average free path of the binder in fine powder is shorter than in coarse powder. When the WC-Ni alloy contains less binder, the difference in the average free path of the binder is minimal, and the variation in residual stress with temperature is not significant. Therefore, if conditions allow, the Ni content in WC-Ni alloy sealing rings should be reduced to minimize the uneven distribution of residual stress due to temperature changes, thus reducing or even preventing thermal cracking in the sealing rings.

Current Research Status on the Application Performance of WC-Ni carbides

?Corrosion Resistance of WC-Ni Alloys

Compared to WC-Co carbides, WC-Ni carbides exhibit superior wear resistance. This is due to the binder in WC-Ni alloys having excellent corrosion resistance, with both passivation and electrochemical corrosion rates for WC-Ni carbides being significantly lower than those for WC-Co carbides. Under acidic conditions in practical production processes, WC alloys with Ni as the binder show better acid resistance than those with Co as the binder.

Table 2 compares the corrosion resistance of WC-Ni and WC-Co carbides. The results show that substituting Co with Ni significantly enhances the corrosion resistance of WC carbides. However, the corrosion resistance of a material is specific to its alloy composition, grain size, and the corrosive conditions (including temperature, concentration, time, and corrosion state). For example, the corrosion resistance of YWN8 in 68%-90% HNO? is not significantly different from, and even slightly lower than, that of YG6 alloy. This is primarily due to the poor resistance of metallic Ni to strong oxidizing acids like HNO?; as the concentration of HNO? and the Ni content in the alloy increase, its corrosion resistance decreases.

Table 2 Corosion resistance performance comparison between WC-Ni and WC-Co cemented carbides

Tribological Performance of WC-Ni Alloy Mechanical Seal Rings

WC-Ni carbide?sealing rings exhibit excellent wear resistance. This is because WC-Ni carbides possess strong oxidation resistance and corrosion resistance in fluid sealing media, which contributes to their superior wear resistance. The friction coefficient of WC-Ni carbides is related to the content, grain size, and distribution of the binder phase. A softer binder phase can lead to adhesion during friction. Additionally, the content and composition of the binder phase can affect the hardness of WC-Ni, thereby influencing the wear resistance of the WC-Ni carbide.

 

???????

Mechanical seal materials are a crucial area of research in sealing technology. With the advancement of modern science and technology and the increasing demands of production and daily life, the requirements for sealing technology have become more stringent. However, research in this field in our country is still relatively behind. Strengthening interdisciplinary collaboration and continually improving experimental and theoretical research are key to overcoming the technological barriers in mechanical seals imposed by foreign countries.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 久久97久久97精品免视看秋霞-黄片av毛片在线免费观看-日韩av高清不卡免费观看-成人午夜福利视频观看地址| 亚洲一区二区日韩精品在线观看-白浆高潮国产免费一区二区三区-热久久这里只有精品99-亚洲精品在线观看中文字幕| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 日韩av不卡一区二区-国产白丝精品91久久-午夜福利理论片在线播放-国产粉饼哪个牌子好用| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 午夜性福福利视频一区二区三区-午夜福利在线看片在线-欧洲内射免费人文艺术-亚洲天堂成人av在线| 激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 日韩精品极品系列在线免费视频-国产中文字幕有码视频-日韩一区二区免费电影-成人夜晚在线观看视频| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 国产精品一区二区久久人人爽-精品人妻一区二区三区有码-亚洲一二三区精品与老人-久久久之精品久久久| 久久99精品成人免费毛片-中文字幕日韩精品欧美-免费观看黄片一区视频-国产亚洲蜜臀av在线观看| 日本一区二区三区乱在线视频-国产精品一区二区精品视频-日本人妻系列在线免费看-国产成人高清三级视频| 精品国产人成亚洲区中文久久-欧美日韩夫妻性生活视频-亚洲欧美日韩高清专区一-国产精品无套内射后插| 亚洲欧洲av一区二区久久-日本丰满熟妇中出在线-欧美一区二区三区人妻少妇-日韩成人av免费在线| 日本免费精品一区二区三区四区-天天日天天射天天综合-国产在线精品免费av-高潮一区二区三区久久亚洲| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 国产刺激国产精品国产二区-亚洲欧洲日本精品专线-国产精品激情丝袜美女图集-久久精品久久免费懂色| 天堂网日韩一区二区三区四区-自拍视频在线观看地址-91麻豆视频免费入口-国产理论片一区二区三区| 日本在线无乱码中文字幕-国产美女自拍视频精品一区-精品人妻中文字幕一区二区三区-精品国产一级二级三级| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 欧美日韩精品视频免费下载-中文字幕一区二区三区伦理-一级特黄大片亚洲高清-午夜欧美日韩精品久久久久| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 日韩成av在线免费观看-中文字幕亚洲第一精品-亚洲欧美日韩国产在线-国产精品国精品国产免费| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 日本在线有码中文视频-精品亚洲综合一区二区三区-国产午夜福利一级二级三级-天堂三级成人久久av| 色人阁免费在线视频观看-中文字幕中文字幕日韩一区-91麻豆成人精品国产-亚洲精品成人剧情在线观看| 白白色视频国产在线观看-美女高潮无套内谢视频日韩-成人能看的性生活视频大全-中文字字幕在线亚洲乱码| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 精品国产日韩一区三区-成人激情毛片免费在线看-国产一区二区高清日韩-日韩成人黄片免费在线观看| 老妇肥熟凸凹丰满刺激-九九热最新视频免费看-亚洲中文字幕乱码视频-国产亚洲精品欧洲在线视频| 日韩bd高清电影一区二区-久久亚洲国产精品久久-亚洲精品国产精品av-大胸少妇av网站在线播放| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频|