色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

?? ?????? ????? ????? ?? ????? (HL) ???? ??? ??? ?? ????? ?? ????? ?????? ??????.

On January 10, 1954, a comet of BOAC disintegrated 7800 meters above Elba, Italy.

On April 8, another “comet” of BOAC crashed into the bay of Naples, Italy, killing 21 people on board. So far, all comets have been grounded.

The frequent fall of comets shocked the world. ?

At that time, British Prime Minister Winston Churchill ordered us to find out the cause of the accident at all costs.

To this end, the British Navy sent out a fleet to salvage the wreckage of the plane near Elba Island from the bottom of the sea hundreds of meters deep, and sent it to the Royal Aircraft Research Institute for investigation.

The investigation found that there were cracks in the lungs of the air crash victims caused by gas expansion, indicating that the sudden decrease of air pressure in the cabin before the crash led to the rapid expansion of gas in the lungs, which led to the rupture of the lungs. Research on the wreckage of the plane showed that cracks appeared in some portholes, which was consistent with the autopsy findings.

At the same time, de havilan company carried out strict inspection on the aircraft under production and grounded. The test lasted more than 9000 hours, and cracks appeared on the aircraft skin, just like the cracks on the wreckage of the crashed aircraft.

According to the research and analysis of the technicians, the accident was caused by the “fatigue” of the metal materials used to make the aircraft body structure.

Under the action of alternating pressure, after a period of time, micro cracks are formed in the local high stress area, and then the micro cracks are gradually extended to fracture.

Fatigue failure has the characteristics of sudden in time, local in location and sensitivity to environment and defects, so it is not easy to be found in time.

Under the impact of repeated pressurization and decompression, the skin at the square porthole of comet aircraft deforms and cracks, which eventually leads to metal fatigue fracture. As the first kind of jetliner in the world, “comet” flies faster than other jetliners, and naturally bears more pressure, which makes it easier to cause metal fatigue.

Thus, through the investigation of the comet accident, a new subject – “fatigue mechanics” was born.

Today we will be familiar with and understand about: fatigue curve and basic fatigue mechanical properties.

Fatigue curve and symmetrical cycle fatigue curve

(1) Fatigue curve and fatigue limit

Fatigue curve: it is the relationship curve between fatigue stress and fatigue life, i.e. S-N curve, which is the basis for determining fatigue limit and establishing fatigue stress criterion.

For metal materials with strain aging, such as carbon steel and ductile iron, when the cyclic stress level drops to a certain critical value, the low stress section becomes a horizontal section, which indicates that the specimen can undergo infinite stress cycles without fatigue fracture. Therefore, the corresponding stress is called fatigue limit, which is denoted as σ – 1 (symmetric cycle, r = – 1).

If this kind of material does not fracture after 107 stress cycles, it can be considered that it will not fracture even if it is subjected to infinite stress cycles, so 107 cycles is often used as the base for determining the fatigue limit.

Another kind of metal materials, such as aluminum alloy and stainless steel, has no horizontal part in S-N curve, but increases with the decrease of stress. At this time, the stress without fracture in a certain cycle can only be defined as the conditional fatigue limit, or finite life fatigue limit, according to the service requirements of materials.

(2) Determination of fatigue curve

Generally, the fatigue curve is measured by rotating bending fatigue test. The principle of four point bending test machine is shown in the figure below.

The high stress (finite life) part of S-N curve was measured by group test method, that is, the higher stress level of 3-4 was taken, and the data of about 5 samples were measured under each stress level, and then the data was processed to calculate the median (survival rate 50%) fatigue life.

The median S-N curve with a survival rate of 50% can be obtained by using the σ – 1 measured by the ascending and descending method as the lowest stress level point of the S-N curve and fitting it with the results measured by the group test method into a straight line or curve.

(3) Fatigue limit under different stress states

The fatigue limit of the same material is different under different stress states, but there is a certain relationship between them.

The results show that there is a certain relationship between symmetrical bending fatigue limit and symmetrical tension compression and torsion fatigue limit.

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 2

(4) Relationship between fatigue limit and static strength

The test shows that the greater the tensile strength of metal material, the greater the fatigue limit.

For medium and low strength steels, there is a linear relationship between fatigue limit and tensile strength.

When σ B is low, it can be approximately written as σ – 1 = σ B.

When σ B is higher, the near linear relationship will deviate, which is due to the decrease of plasticity and fracture toughness and the easy formation and propagation of cracks.

Fatigue diagram and asymmetrical cyclic fatigue limit

Many parts work under asymmetric cyclic load, so it is necessary to measure the asymmetric cyclic fatigue limit of materials to meet the needs of design and material selection of such parts.

The fatigue limits of various asymmetrical cycles are usually obtained from the fatigue diagram by engineering drawing method.

According to different drawing methods, there are two kinds of fatigue diagrams

(1) σ a – σ m fatigue diagram

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 3

Under the condition of different stress ratio R, the fatigue limit σ r expressed by σ Max is decomposed into σ A and σ m, and the fatigue diagram of σ a – σ m is obtained by making ABC curve in the coordinate system.

(2) σ max (σ min) – σ m fatigue diagram

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 4

The fatigue limit under different stress ratio R is expressed by σ max (σ min) and σ m respectively in the coordinate system to form the fatigue diagram.

AHB is the fatigue limit σ Max under different R.  

The fatigue limit increases with the increase of average stress or stress ratio, but the stress amplitude a decreases.

Fatigue overload resistance

The original fatigue limit of the material may not change or decrease when the metal parts are subjected to short-term overload occasionally, which depends on the overload stress of the material and the corresponding cumulative overload cycles.  

If the metal runs for a certain number of cycles at a stress level higher than the fatigue limit, its fatigue limit and fatigue life will decrease, which will cause overload damage.

The ability of metal material to resist fatigue overload damage is expressed by overload damage boundary or overload damage area.

The overload damage boundary is determined by experiments: different overload stress levels and corresponding stress cycles that begin to reduce fatigue life are measured, and different test points are obtained. The overload damage boundary is obtained by connecting each point. The two queries are not favorable

The shadow line area between the overload damage boundary and the straight line section of the high stress area of the fatigue curve (the stress cycle of fatigue fracture under each stress level of this section is called the overload endurance value) is called the overload damage area.

When the parts are overloaded in this area, the fatigue limit of the material will be reduced in varying degrees, and the more the fatigue limit is reduced near the endurance value.

The steeper the overload damage boundary (or overload endurance value) is and the narrower the damage area is, the stronger the ability of resisting fatigue overload is.

Fatigue notch sensitivity

Due to the need of use, parts often have steps, corners, keyways, oil holes, threads and so on. These structures are similar to notch effect, which will change the stress state and cause stress concentration.

So it is important to understand the effect of stress concentration caused by notch on fatigue limit.

There are two extreme cases when evaluating materials according to fatigue notch sensitivity

(a) KF = KT, that is to say, the stress distribution of notched specimen is exactly the same as that of elastic state, and there is no stress redistribution. At this time, the notch reduces the fatigue limit most seriously, and the fatigue notch sensitivity QF = 1, and the notch sensitivity of material is the largest.

(b) KF = 1, σ – 1 = σ – 1n, the notch does not reduce the fatigue limit, which indicates that the stress has a great redistribution in the fatigue process, the stress concentration effect is completely eliminated, QF = 0, the notch sensitivity of the material is the smallest.

Therefore, QF value can reflect the ability of material to redistribute stress and reduce stress concentration during fatigue.

High cycle fatigue: most metals are very sensitive to notches; ears are broken

In low cycle fatigue, most metals are not sensitive to notch, because the notch root area of the latter is in the plastic zone, resulting in stress relaxation and stress concentration reduction.

欧美精品日韩精品在线-久热传媒在线免费观看视频-亚洲一级天堂作爱av-久久精品国产精品亚洲蜜月| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 91国产自拍视频在线-久久综合婷婷伊人五月天-国产日韩一区二区三区高清视频-日本电影一区二区5566| 九九热视频这里免费看-一二三区无线乱码中文在线-粉嫩美女无套内射视频免费播放-国产麻豆一精品一男同| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频| 日本一区二区三区视频高清-国产麻无矿码直接观看-国产精品久久久久久无-日韩精品不卡在线视频| 九九热久久这里有精品视频-2020亚洲欧美日韩在线-国产精品久久无遮挡影片-亚洲国产高清在线不卡| 熟妇女人妻丰满少妇中文-最新国产成人在线网站-亚洲性日韩精品一区二区三区-亚洲免费熟女做爰视频| 少妇人妻午夜精品视频-亚洲乱妇老熟女爽到潮的片-最新国产黄色一区二区-亚洲一区国产精品喷潮| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 国产自拍成人激情视频-欧美大香蕉在线视频观看-精品人妻一区二区三区麻豆91-经典三级一区二区三区| 亚洲一区二区三区免费视频观看-日韩情爱视频在线观看-丝袜美足在线视频国产在线看-日韩美女啪啪不卡视频| 国产丝袜美腿视频在线观看-美女被男人摸胸动态图-少妇精品高潮叫久久久-午夜激情福利国产精品| 日本很污动漫在线观看-亚洲精品乱码国产精品乱码-日本亚洲一区二区三区四区-少妇高潮太爽了免费观看| 亚洲国产高清在线一区二区三区-最近免费视频观看在线播放-中出内射视频在线播放-97碰碰日本乱偷人妻禁片| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 日本亚洲午夜福利视频-欧美日韩高清精品一区二区-av成人免费在线视频-日韩精品一区二区三区费暖暖| 天堂av日韩在线播放-中文字幕久久精品亚洲-国产精品沟厕在线播放-在线观看亚洲精品在线av| 亚洲av成人午夜福利在线观看-日韩精品成人影院久久久-国产在线高清不卡一区-激情五月另类综合视频| 精品三级国产三级在线专区-精品一区二区三区视频观看-在线精品日韩亚洲欧一二三区-美女高潮无套内射视频免费| 很黄无遮挡在线免费网站-韩国精品一区福利视频在线播放-爱看色黄色大片儿网站-日韩综合一区二区三区在线观看| 国产精品一区二区三区四区-日本毛茸茸的丰满熟妇-中文字幕久久中文字幕久久-国产成人三级一区二区在线观看| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| av午夜福利一片免费看久久-中文字幕日韩无敌亚洲精品-四虎高清成人在线观看-亚洲开心婷婷中文字幕| 成人一区二区三区免费观看-国内久久偷拍精品视频-欧美人与性动α欧美精品z-性感美女勾引男人视频| 一本久道视频无线视频试看-亚洲国产精品一区二区三区久久-中文字幕色偷偷人妻久久-久久精品99国产精品中| 大屁股丰满肥臀国产在线-亚洲国产一区二区精品在线观看-久久黄色精品内射胖女人-日韩精品国产综合一区二区| 亚洲天堂成人免费视频-青草精品在线观看视频-国产三级在线观看国产精品-黄色日本黄色欧美视频| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 乱中年女人伦中文字幕久久-国产成人高清免费视频网站-中文字幕亚洲人妻在线视频-中文字幕剧情av在线| 免费亚洲毛片在线播放-国产精品国产三级国产专区不卡-亚洲欧美日韩狂野精品-白嫩丰满人妻荫蒂毛茸茸| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 日本区三区免费精品视频在线播放-日本经典中文字幕人妻-成人在线播放视频观看-少妇特撒尿偷拍免费观看| 久久99国产欧美精品-深夜宅男宅女在线观看-骚虎三级在线免费播放-精品国模人妻视频网站| 久久久免费福利视频观看-成年人在线观看视频免费播放-噜噜中文字幕一区二区三区-视频一区视频二区三区| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 与老熟女激情av国产-91午夜福利在线观看视频-国产特级黄片免费观看-精品亚洲熟妇中文字幕| 精品国产亚洲av蜜臀-欧美亚洲伦理在线视频-久久亚洲国产成人影院av-国产精品99蜜臀久久不卡二区|