色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

A face milling cutter is primarily used for machining flat surfaces. It features multiple cutting teeth engaged in cutting simultaneously, offering stable operation.If we want to choose a face mill cutter, we need to follow these principles below.

 

Structural Types

carbide?face milling cutters can be categorized into three types: integral welding type, mechanical clamping ?type, and indexable type.

The diagram 1 below illustrates an integral welding type face milling cutter. This type has a compact structure and is relatively easy to manufacture. However, if the teeth are damaged, the entire milling cutter must be discarded, so its usage has decreased.

welded face mill cutters and clamped face mill cutters

As shown in the above diagram is the mechanical clamping welding type face milling cutter. This cutter welds carbide?inserts onto small cutter heads, which are then mechanically clamped into slots on the cutter body. When the inserts are worn out, they can be replaced with new ones, thereby extending the cutter body’s service life.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 2

As shown in Figure 2, the commonly used indexable face milling cutter consists of components such as the cutter body (5), insert (1), tightening screws (3), cutter blade (6), wedge block (2), and eccentric pin (4). The insert (1) is clamped onto the cutter body using the wedge block (2) and tightening screws (3). Before tightening the screws, the eccentric pin (4) is rotated to adjust the axial runout of the insert within a specified range at the axial support point. Once the cutter blade (6) is mounted on the insert, it is clamped in place by the wedge block (2) and tightening screws (3). The eccentric pin (4) also prevents excessive axial forces on the insert during cutting, thereby preventing axial movement.

 

Compared to high-speed steel face milling cutters, carbide?face milling cutters offer higher milling speeds, better processing efficiency, and improved surface quality. They are capable of machining workpieces with hardened surfaces and layers, demonstrating significant advantages in enhancing product quality and processing efficiency.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 3

Face Milling Cutter Main Structural Parameters

(1) Diameter and Number of Teeth

Diameter and number of teeth are the two main structural parameters of a face milling cutter. To accommodate different cutting requirements, face milling cutters of the same diameter are classified into coarse, medium, and fine types based on the number of teeth. Taking a 100 mm diameter cutter as an example, the number of teeth for coarse, medium, and fine types are 5 teeth, 6 teeth, and 8 teeth respectively.

 

(2) Geometric Angles

Indexable face milling cutters have key geometric angles including the lead angle κr, rake angle γp, and clearance angle γf. The lead angle κr is available in 45°, 60°, 75°, and 90° variants, with 75° being the most commonly used. When machining flat surfaces with shoulders or thin-walled workpieces, a 90° lead angle is typically chosen.

The rake angle γp and clearance angle γf can be combined into positive rake, negative rake, and positive-negative rake configurations. Positive rake angles are used for machining general materials; for instance, γp=7° and γf=0° are common for milling mild steel and cast iron, while γp=18° and γf=11° are used for milling aluminum alloys. Negative rake angles are employed for machining cast steel and hard materials, often set at γp=-7° and γf=-6°. Positive-negative rake angles offer good impact resistance and chip removal properties, suitable for milling general steel and cast iron, commonly used on machining centers with values like γp=12° and γf=-8°.

How to Choose a Face Mill Cutter based on 3 Elemental Factors? 4

How to Select a Face Milling Cutter?

Selection of Face Milling Cutter Diameter

(1) When the machining area is not large, it is important to choose a tool or milling cutter with a diameter larger than the width of the plane. This allows for single-pass face milling. When the width of the face milling cutter is 1.3 to 1.6 times the width of the machining area, it effectively ensures proper chip formation and removal.

 

(2) For machining large surface areas, it is necessary to select a milling cutter with an appropriate diameter and perform multiple passes for face milling. Due to machine limitations, cutting depth, width, and the dimensions of the cutter and inserts, the diameter of the milling cutter may be constrained.

 

(3) When machining small plane areas or dispersed workpieces, a smaller diameter end mill should be selected for milling. To achieve optimal efficiency, the milling cutter should have contact with the workpiece equal to 2/3 of its diameter, which means the milling cutter diameter should be 1.5 times the width of the cut. Properly using this ratio of cutter diameter to cutting width ensures the milling cutter approaches the workpiece at an ideal angle. If the machine’s power cannot sustain cutting at this ratio, axial cutting thickness can be divided into two or more passes to maintain the ratio of cutter diameter to cutting width as much as possible.

 

Selection of Number of Teeth on the Milling Cutter

When selecting a milling cutter for machining, the number of teeth is an important consideration. For example, a coarse-toothed milling cutter with 6 teeth has a diameter of 100 mm, whereas a fine-toothed milling cutter with 8 teeth also has a diameter of 100 mm. The density of teeth affects both production efficiency and product quality. Dense teeth improve efficiency and quality but may hinder chip removal. Depending on the diameter of the teeth, they can be categorized as sparse teeth, fine teeth, and dense teeth.

 

Sparse teeth are used for rough machining of workpieces, with 1 to 1.5 inserts per 25.4 mm diameter, providing ample space for chips. Such tools are suitable for continuous chip formation in soft materials, using long blades and wide cuts. Dense teeth are advantageous for stable machining conditions, typically used for rough machining of cast iron, shallow and narrow cuts in high-temperature alloys, and when chip space is not required.

Dense teeth are applied in fine milling, with axial cutting depths ranging from 0.25 to 0.64 mm per tooth, minimizing cutting loads and power requirements, suitable for machining thin-walled materials.

 

Selection of Milling Inserts

The choice of milling inserts for flat milling is a critical factor to consider. In certain machining scenarios, pressed inserts are more suitable, while in others, ground inserts are preferred.

For rough machining

Pressed inserts are often preferred as they lower machining costs. Pressed inserts have lower dimensional accuracy and edge sharpness compared to ground inserts. However, they offer better edge strength, making them suitable for rough milling tasks. They can withstand higher impact and accommodate larger depths of cut and feed rates. Pressed inserts typically feature chip grooves on the front face, reducing cutting forces and friction with the workpiece and chips, thereby lowering power requirements. However, their surface finish is less compact than ground inserts, resulting in varying heights among insert tips on the milling cutter body. Due to their cost-effectiveness, pressed inserts find widespread use in production.

 

For fine milling

Ground inserts are preferable due to their superior dimensional accuracy. This high precision ensures precise positioning of the cutting edge during milling, leading to higher machining accuracy and lower surface roughness values. Moreover, the trend in ground milling inserts for fine machining includes forming large positive rake cutting edges with chip grooves, allowing the inserts to handle small feed rates and depths of cut effectively. In contrast, carbide?inserts without sharp rake angles may experience friction with the workpiece during fine machining with small feed rates and depths of cut, reducing tool life.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

亚洲最大的偷拍视频网站-国产三级精品三级男人的天堂-国产成人免费精彩视频-一区二区精品日韩国产精品| 99热亚洲熟女少妇一区二区-久草福利免费在线视频观看-人妻丰满熟妇av一区二区-日韩高清亚洲一区二区| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 91精品久久综合熟女-日产精品毛片av一区二区三区-国产精品永久在线播放-一区二区中文字幕在线视频| 日本精品视频免费在线-国产精品自在在线影院-日韩午夜一区二区三区-国产精品中文第一字幕| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 日日夜夜久久国产精品-国产男女无遮挡猛烈免费观看-在线观看热久精品视频-国产香蕉视频在线内射| 亚洲成人av综合在线-日韩精品久久久中文字幕人妻-国产精品无套白嫩剧情-五月婷婷久久激情综合| 国内精品国产三级国产-91制片厂麻豆果冻剧情观看-日韩中文字幕有码在线视频-精品人妻伦一区二区三区久久| 亚洲一级特黄大片做受-国产91喷潮在线观看-日本不卡一区二区三区四区-在线观看高清视频一区二区三区| 91精品久久综合熟女-日产精品毛片av一区二区三区-国产精品永久在线播放-一区二区中文字幕在线视频| 狠狠操夜夜操天天干天天-午夜一级视频在线免费观看-我要看欧美一级黄色录像-91嫩草国产亚洲精品| 色男人天堂综合久久av-蜜桃精品一区二区三区蜜桃臀-国产粉嫩高中生第一次不戴套-成人激情自拍视频在线观看| 日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av| 国产精品一区成人精品果冻传媒-日韩精品一区二区三区不长视频-欧美日韩不卡在线视频-99久久热视频在线观看| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 中文字字幕乱码一区二区三-美女高清做自拍色啪视频-国产无遮挡男女一进一出-成人亚洲校园在线春色| 久久精品国产色蜜蜜麻豆-国产精品一区二区三区你懂的-日本国产精品中文字幕-91黄色国产在线播放| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 日本亚洲一线二线三线-九月丁香婷婷啪啪色综合-狠狠综合欧美综合欧美色-亚洲丁香视频中文在线| 日韩av不卡一区二区-国产白丝精品91久久-午夜福利理论片在线播放-国产粉饼哪个牌子好用| 中国美女欧美熟妇视频-五月爱婷婷丁香六月色-国产特黄特色成年女人毛片免-人妻精品一区二区三区久久| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 国产黑色丝袜在线观看网站-成人a免费大片在线看-熟妇人妻精品一区二区三区视频-日韩av高清不卡一区二区三区| 久久精品国产欧美日韩热-久久综合色一综合色88-特西西日本午夜人体艺术-97中文字幕在线视频| 婷婷激情五月天第四色-岛国片av在线免费观看-久久综合久久一区二区-91青青草原免费观看| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 97中文字幕一区二区三区-国产精品亚洲av无人-亚洲国产精品自产拍久久-成人深夜福利在线视频| 国产精品综合亚洲综合-精品人妻码一区二区三区红楼视频-亚洲精品一品区二品区三区-日韩欧美色精品噜噜噜| 日韩少妇黄色在线观看-国产精品视频不卡一区二区-国产成+人+亚洲+欧美+综合-欧美日韩亚洲大陆国产| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 日韩毛片精品一区二区-无套内谢少妇高潮毛片些-国产精品午夜激情视频-亚洲天码一区二区三区| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 亚洲欧美日韩另类影院-亚洲一区二区三区精品春色-精品人妻久久一品二品三品-人妻有码av中文字幕久久午夜| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品|