色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Low-pressure hot isostatic pressing (HIP) is a new sintering process developed in Western developed countries in the 1980s, which combines vacuum sintering and hot isostatic pressing in a single device to complete the process in one step. We have utilized low-pressure hot isostatic pressing technology to manufacture recycled mining carbide, which effectively improves the mechanical and physical properties of the alloys, resulting in a virtually pore-free microstructure and excellent rock drilling performance on-site.

Hot Isostatic Pressing

Experimental Method

Recycled WC powder with a Fisher particle size of 3.00~10.00 μm and normal WC powder with a Fisher particle size of 10.00~18.00 μm were mixed with Co powder or Ni powder with a loose packing density of 0.5~0.7g/cm3 to prepare mixtures of grades YJ1, YJ2, N309, etc. The mixtures were shaped, degummed, and then sintered in a domestically produced horizontal vacuum furnace and a low-pressure hot isostatic pressing furnace manufactured by a German specialized equipment company. The low-pressure hot isostatic pressing process is as follows: loading → vacuum pumping → heating → maintaining sintering temperature → charging argon and pressurizing → maintaining pressure and temperature → cooling and depressurizing → unloading. Electron microscopy was used for metallographic analysis, and the linear shrinkage and shrinkage rate of the samples during the sintering process were measured by the low-pressure hot isostatic pressing sintering furnace to analyze the densification process. The test alloys were made into D43×22 straight horseshoe bits for calibration tests in mining operations.

Experimental Results

Comparison of Properties

Between Low-Pressure Hot Isostatic Pressing Treatment of Recycled Material and Vacuum Sintering Treatment of Normal Material. The two types of tungsten carbide powders, recycled and normal, were processed using the same manufacturing process, undergoing vacuum sintering and low-pressure hot isostatic pressing treatment, respectively. The results are listed in Table 1.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 2

As can be seen from Table 1, the porosity of the alloy treated with low-pressure hot isostatic pressing using recycled WC powder is even lower than that of the normal alloy, and its performance has been significantly improved, with an increase in the transverse rupture strength value; moreover, the elimination of type B pores ranging from 10 to 25 μm indicates the intrinsic relationship between the reduction in porosity and the increase in transverse rupture strength, while also confirming the capability of low-pressure hot isostatic pressing sintering to eliminate pores in recycled alloys.

Low-Pressure Hot Isostatic Pressing Alloy Linear Shrinkage Test

The linear shrinkage and shrinkage rate of the samples during the sintering process in the low-pressure hot isostatic pressing furnace were measured as shown in the attached figure. The alloy undergoes two stages: vacuum sintering and hot isostatic pressing. The macroscopic pores are eliminated during the vacuum sintering stage, and the microscopic pores are eliminated during the hot isostatic pressing stage to achieve the final densification level.

Comparison of On-site Rock Drilling Effects

The two types of tungsten carbide?powders, recycled and normal, were made into alloys of grades YJ1, YJ2, N309, etc., and calibration tests were conducted at the Taolin Lead-Zinc Mine. The results are listed in Table 2.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 3

The rock drilling calibration indicates that high-quality mining carbide?can be produced from recycled WC powder through low-pressure hot isostatic pressing treatment, and their performance is comparable to that of mining carbide?made from normal tungsten carbide.

What's Low-Pressure Hot Isostatic Pressing of Recycled Mining Carbide? 4

Result Analysis

Process Characteristics of Low-Pressure Hot Isostatic Pressing for Eliminating Pores in Recycled carbide

The densification of carbide?primarily occurs during sintering, where the plastic flow of the binder phase and the rearrangement of WC grains are driven by surface tension. However, under atmospheric or vacuum sintering, a certain amount of porosity always remains after shrinkage densification is complete; this is because when pores are sealed, the stress inside the pores reaches equilibrium with the surface tension of the pores. Additionally, due to the mixed composition of recycled materials and the presence of more harmful impurities, large pores and voids are easily formed during vacuum sintering, leading to issues such as low alloy density, low fracture strength, significant hardness variations, and severe contamination of the alloy. Applying a certain pressure can promote further flow of the binder phase and rearrangement of WC grains, thereby greatly reducing or even completely eliminating these pores or voids.

Study on the Densification Mechanism of Low-Pressure Hot Isostatic Pressing

The change curve of the linear shrinkage rate of recycled carbide?samples during low-pressure hot isostatic pressing sintering is shown in the attached figure. There are three peaks on the shrinkage rate curve: Peak A appears at a sintering temperature of 1200°C, which is solid-phase sintering. Due to the low yield point of the binder phase, plastic flow occurs under a small external force. The flow of the binder metal changes the contact situation between powder particles, causing the carbide?particles to move and come closer together. Peak B appears during the liquid-phase sintering process at 1340°C, where WC particle rearrangement, solution precipitation, and skeleton formation result in significant shrinkage of the sintered body, and macroscopic pores are eliminated during the vacuum sintering process of low-pressure hot isostatic pressing. Peak C appears at the beginning of the pressurization stage, where the rise in pressure eliminates the micro-pores in the product. However, with the extension of the pressure maintenance time, no new shrinkage peak appears in the product.

 

???????

(1) The physical and mechanical properties of the recycled alloy treated by low-pressure hot isostatic pressing are superior to those of alloys manufactured by conventional processes, with a significant reduction in porosity and the elimination of type B pores.

(2) The recycled alloy treated by low-pressure hot isostatic pressing does not fall short of normal alloys in on-site rock drilling tests, and its wear resistance is even improved.

(3) The mechanism by which low-pressure hot isostatic pressing improves the performance of the alloy is mainly the elimination of large-sized pores and the reduction in porosity.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 中文字幕在线精品人妻-人妻母乳综合一区二区三区四区-伊人久久婷婷色综合98网-亚洲人精品午夜射精日韩| 精品国产成人一区二区99-午夜爱爱视频最新深夜-午夜福利片中文字幕在线观看-成人性生交大片免费小优| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 四虎国产在线播放精品免费99-一区二区三区中文字幕日本-91国偷自产中文字幕久久-青青草一级视频在线观看| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 黄色av日韩在线观看-偷拍自拍在线免费视频-色偷偷偷亚洲综合网另类-国产成人免费综合视频| 亚洲av色香一区二区三含羞草-av毛片在线观看网站-中文字幕一区二区人妻中文字-91精品人妻日韩一区二区| 日本三十四十五十路熟妇-国产一区二区三区蜜桃视频-蜜桃传媒第一区免费观看-来点刺激的视频日韩经典三级| 日韩人妻毛片中文字幕-国产精品亚洲综合第一页-国产精品久久亚洲av-亚洲国产精品一区二区不卡| 18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 中文字幕乱码亚洲精品-亚洲伊人久久大香线蕉-麻豆视传媒视频短免费网站-极品美女被后入干出水视频| 蜜臀视频在线观看一区二区三区-少妇人妻偷人精品系列-天美传媒国产精品果冻-色综合久久综合欧美综合网| 久久亚洲国产高清av一级-免费国产精品自偷自偷免费看-日本a级特黄三级三级三级-欧美日韩一区二区中文字幕高清视频| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 国产日本高清一区二区三区-久久亚洲成人精品性色-九九热99这里只有精品-亚洲愉拍自拍另类天堂| 伊人久久大香线蕉综合av-久久久中文字幕人妻精品一区二区-青草在线免费观看视频-国产清纯白嫩美女蜜臀av| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 亚洲国产高清在线一区二区三区-最近免费视频观看在线播放-中出内射视频在线播放-97碰碰日本乱偷人妻禁片| 久久伊人蜜桃av一区二区-交换享用人妻在线观看-中文字幕国产精品综合-亚洲久悠悠色在线播放| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区| 男人天堂色男人色偷偷-国产内射在线干得爽到语无次-国产成人亚洲欧美二区综合-精品欧美高清视频观看| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 台湾香港a毛片免费观看-国产美女口爆吞精的后果-亚洲天堂成人免费在线-国模在线视频一区二区三区| 亚洲一区日韩精品在线观看-精品人妻少妇一区二区免费蜜桃-国产三区四区五区在线观看-真正国产熟女免费视频| 色婷婷av一区二区三区网-日韩在线不卡一二视频-中文字幕乱码免费在线视频-黄片欧美免费在线观看| 国产精品乱码一区二区三区-亚洲国产日本不卡一卡-日韩av手机免费网站-国产精品日韩在线亚洲一区| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 亚洲黄色一级二级三级在线观看-成年人手机视频在线观看-都市激情校园春色亚洲一区-九九久久免费视频一区二区三区| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 91人人妻人人澡人人爽超污-精久国产av一区二区三区-日韩av在线一区二区三区-免费视频又爽内射男女| 精国产精品亚洲二区在线观看-日韩人妻少妇一区二区三区-久久视频这里只要精品-亚洲精品欧洲综合在线观看| 亚洲一区二区三区日本久久-精品国产成人一区二区不卡在线-91精品国产色综合久久成人-一区二区三区成人在线观看| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 亚洲欧美日韩不卡视频-四虎永久在线精品免费看-久久av丰满熟妇极品-亚洲国产精品中文字幕一区| 久久亚洲中文字幕少妇毛片-91蜜臀精品国产自偷在线-日韩av在线播放天堂网-亚洲在线精品一区二区三区|