色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Cemented carbide is a significant type of cemented carbide, widely used in manufacturing cutting tools, wear-resistant parts, high-temperature alloy components, and other important applications. Factors such as extrusion forming processes, forming agents, sintering atmosphere, and magnetic properties all impact the performance and quality of WC+Co alloy. Studying the effects and mechanisms of these factors is crucial for optimizing the manufacturing process and enhancing the performance of cemented carbide. This article will explore the influence of sintering atmosphere and particle size on the quality of the extrusion forming process, providing theoretical and practical guidance for further understanding the manufacturing process and performance optimization of cemented carbide.

cemented carbide

Experimental Materials and Methods

Tungsten carbide (WC) powders were used as the raw material. Four different particle sizes of WC powder were selected: 4.0 μm, 2.2 μm, 1.1 μm, and 0.5 μm, which were labeled as WC1, WC2, WC3, and WC4, respectively. Metal cobalt (Co) powder was used as the binder phase, and paraffin was used as the forming agent. Four different WC-Co mixtures with varying particle sizes were prepared.

The mixtures were processed into green bodies with specific shapes and densities using extrusion forming equipment. The pressed green bodies were then placed in a sintering furnace and subjected to high-temperature sintering at 1400°C for 30 minutes, followed by cooling, to form cemented carbide bars.

The magnetic properties of the cemented carbide bars were tested using a magnetic performance tester, measuring parameters such as coercive force (Hc) and saturation magnetization (Bs), and the results were analyzed.

 

Experimental Results and Analysis

Table 1 presents the effects of different WC particle sizes on the coercive force (Hc) and saturation magnetization (Bs) of cemented carbide bars.
Table 1 presents the effects of different WC particle sizes on the coercive force (Hc) and saturation magnetization (Bs) of cemented carbide bars.

Effect of Particle Size on Coercive Force

As shown in Table 1, the coercive force of cemented carbide bars increases with decreasing WC particle size, while the saturation magnetization also increases. This indicates that cemented carbide bars made with fine and ultrafine WC particles exhibit poorer magnetic properties. Among the samples, the ultrafine WC (WC4) shows the highest coercive force of 4450 A/m, followed by medium-sized WC (WC3) with a coercive force of 3300 A/m. Coarse WC (WC2) and very coarse WC (WC1) have lower coercive forces, at 2350 A/m and 1200 A/m, respectively. The increase in coercive force with decreasing WC particle size is primarily due to the increase in internal defects and dislocations within smaller particles. These defects and dislocations create resistance to domain wall movement, making the magnetization process more difficult and requiring a larger external magnetic field to achieve saturation, thereby increasing the coercive force.

 

Effect of Particle Size on Material Magnetic Performance Stability

For fine and ultrafine WC particles, the larger grain boundary area facilitates grain boundary diffusion and reactions, which reduces the material’s magnetic properties. As the WC particle size decreases, the magnetic saturation of cemented carbide bars gradually increases. Specifically: coarse WC (WC1) exhibits the lowest magnetic saturation at only 1.25 T; medium-sized WC (WC2) has a magnetic saturation of 1.15 T; fine WC (WC3) and ultrafine WC (WC4) show higher magnetic saturations at 1.05 T and 0.93 T, respectively. This is likely because fine and ultrafine WC particles have higher chemical reactivity, promoting the diffusion and bonding of the Co binder, thereby improving the stability of the material’s magnetic performance.

Magnetic saturation is an indicator of the remaining proportion of magnetizable material and is closely related to magnetic properties such as coercive force and remanence. The impact of WC particle size on magnetic saturation can be attributed to the degree of solubility of the binder phase in the cemented carbide bars. Coarse and medium-sized WC particles, having larger specific surface areas, have more contact with the Co binder, which enhances the solubility of Co in the cemented carbide bars. This effectively improves the material’s magnetic performance stability, resulting in higher coercive force and better magnetic stability. Conversely, fine and ultrafine WC particles, with smaller specific surface areas, reduce the effectiveness of the Co binder, potentially affecting the material’s hardness and magnetic properties. Thus, selecting the appropriate particle size during the preparation of cemented carbide bars is crucial for achieving the best overall performance based on specific application needs.

 

Impact of Gamma Phase on Material Performance

For cemented carbide materials, the proportion of the gamma phase directly affects the material’s hardness and magnetic properties. Variations in carbon and oxygen content also influence the gamma phase proportion and must be considered during material preparation. Generally, higher carbon content leads to an increase in the gamma phase proportion, thereby enhancing the material’s hardness and magnetic performance. Therefore, different WC particle sizes may have varying carbon and oxygen contents, which also affects the gamma phase proportion and the overall performance of the material.

 

Discussion on Sintering Atmosphere

In the sintering process of cemented carbides, the choice and control of the atmosphere have a decisive impact on the final microstructure and magnetic properties of the material. The atmosphere not only affects the chemical reactions during sintering but also directly relates to the microstructure and final performance of the cemented carbide. The types of sintering atmospheres are as follows:

Oxidizing Atmosphere:? air.

Reducing Atmosphere: Contains components such as H? or CO: hydrogen atmosphere for cemented carbide sintering.

Inert or Neutral Atmosphere: Argon, helium, vacuum.

Carburizing Atmosphere: Contains high components that cause carburization of the sintered body, such as CO, methane, and hydrocarbon gases.

Nitrogen-Based Atmosphere: High nitrogen content sintering atmosphere: 10% H? in N?.

We mainly selected vacuum, argon, and hydrogen atmospheres for discussion. The variations in coercive force and magnetic saturation of cemented carbides sintered in argon, vacuum, and hydrogen atmospheres differ depending on the atmosphere, as shown in Table 2.

Table 2: Effects of Different Sintering Atmospheres on Magnetic Properties of Cemented Carbide Bars
Table 2: Effects of Different Sintering Atmospheres on Magnetic Properties of Cemented Carbide Bars

From Table 2, it can be observed that under vacuum and argon atmospheres, the coercive force (Hc) of cemented carbide bar is higher compared to that in a hydrogen atmosphere. Conversely, the saturation magnetization (Bs) is lowest in a hydrogen atmosphere compared to vacuum and argon atmospheres.

Under vacuum and argon atmospheres, the effective control of oxygen partial pressure and the exclusion of volatile elements result in fewer pores and inclusions, clearer grain boundaries, and better grain growth, thereby enhancing the magnetic properties of the material. In contrast, in a hydrogen atmosphere, the reducing nature of hydrogen may reduce some elements in the cemented carbide, leading to the presence of uncertain phase components, poor grain growth, and subsequently affecting the material’s magnetic properties.

For coercive force (Hc), it is largely dependent on the material’s microstructure and magnetic anisotropy. Under vacuum and argon atmospheres, effective control of oxygen partial pressure and exclusion of volatile elements reduce magnetic anisotropy in the cemented carbide, which improves coercive force. However, in a hydrogen atmosphere, hydrogen’s reducing effect can lead to the reduction of some elements in the cemented carbide, resulting in grain defects and inclusions that directly affect magnetic anisotropy and reduce coercive force.

Regarding saturation magnetization (Bs), the relative magnetic saturation value in cemented carbide is influenced by factors affecting carbon content in the alloy. In vacuum or argon atmospheres, effective control of oxygen content reduces carbon loss. Although the pressed green body contains oxygen, which can be reduced by free carbon and carbon in WC (MeO + C = Me + CO), the oxygen content in these atmospheres is relatively low. In a hydrogen atmosphere, decarburization reactions (WC + 2H? → CH? + C) begin at around 100°C. Throughout the preparation process, the material is exposed to a decarburizing atmosphere, leading to a lower relative magnetic saturation value.

How Do Sintering Atmosphere and Particle Size Affect the Extrusion Forming Quality of Cemented Carbide Bars? 2

???????

This experiment investigated the effects of different particle sizes and sintering atmospheres on the magnetic properties of cemented carbide bars. By comparing the magnetic properties of cemented carbide under different WC particle sizes (coarse, medium, fine, and ultrafine) and sintering atmospheres (vacuum, argon, and hydrogen), it was found that both particle size and atmosphere have a significant impact on the magnetic performance of the material.

From the perspective of particle size, as the WC particle size decreases, the coercive force of the cemented carbide bars increases, while magnetic saturation also increases. This indicates that particle size has a substantial effect on the magnetic properties of cemented carbide. Fine and ultrafine WC particles, due to their higher chemical reactivity and good sintering performance, can promote the diffusion and bonding of the Co binder, thus enhancing the stability of the material’s magnetic performance. However, smaller particle sizes may lead to increased porosity and inclusions, affecting the material’s hardness and magnetic performance. Therefore, the choice of particle size should be tailored to the specific application needs when preparing cemented carbide.

Regarding the atmosphere, cemented carbide bars sintered under vacuum and argon atmospheres exhibited higher coercive force and better magnetic stability. This is because these atmospheres effectively control the oxygen content and volatile elements, reducing porosity and inclusions, and promoting clearer grain boundaries and grain growth. In contrast, cemented carbide bars sintered in a hydrogen atmosphere showed significantly lower magnetic saturation. This is likely due to the decarburizing effect of hydrogen. Therefore, selecting the appropriate sintering atmosphere is crucial for obtaining cemented carbide bars with excellent magnetic properties. Further improvements in cemented carbide performance can be achieved by optimizing sintering process parameters and adding suppressants.

?????? 4, 2024

Meilleur matériaux TOP

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 亚洲国产高清一区二区三区不卡-亚洲综合小综合中文字幕-亚洲黄色成人av在线-日韩一区二区三区av观看| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 亚洲国产日韩精品欧美银杏-99久久免费热在线精品-国产精品免费不卡av-国产精品老熟女视频一区二区| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 中文熟妇人妻又伦精品视频-久久午夜精品人妻一区二区三区-少妇被粗大猛进进出出-日韩av在线成人观看| 国产成人综合中文字幕-中文字幕午夜五月一二-在线视频精品一区二区三区-久久96精品国产亚洲av蜜臀| 91天美精东果冻麻豆-亚洲自拍伦理在线观看-国产成人一区二区三区日韩精品-在线中文字幕av日韩| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 18禁无遮挡美女国产-久久精品国产精品亚洲毛片-国内精品极品在线视频看看-日本二区 欧美 亚洲 国产| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 91高清精品一区在线观看-成人黄色大片免费网站-国产成人综合亚洲另类-气质女人呻吟内射在线观看| 日韩精品少妇一二三区免费av-麻豆蜜桃av免费观看-亚洲欧洲日韩一区二区中文字幕-久久九特黄的免费大片| 国产精品中文字幕在线一区-国产成人美女精品自在拍av-密桃av一区二区三区四区-女优免费中文字幕在线| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 亚洲少妇视频免费观看高清-亚洲午夜福利在线播放-偷拍偷窥精品视频在线-黄色大片国产免费永久网站| 你懂的视频网站亚洲视频-欧美色欧美亚洲另类搞逼-国产三级精品三级精品在一区-亚洲国产午夜精品在线| 亚洲不卡av影院在线-久久精品伊人久久精品-亚洲国产日韩欧美三级-久久亚洲中文字幕精品二区| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 日本淫片一区二区三区-精品亚洲人伦一区二区三区-精品成人短视频在线观看-日韩亚州欧美国产另类| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 日韩精品中文字幕人妻中出-日韩av在线免费播放-国产一级特黄一区二区三区-日本一区二区亚洲一区二区| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 四只虎视频大全免费观看-日本黄色激情免费网站-免费岛国大片在线播放-国产午夜福利在现观看| 人妻精品一区二区视频免费-99热视频免费在线观看-亚洲av第一第二第三-乱码人妻精品一区二区三区| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 中文字幕一区二区三区日韩精品-久久老熟女一区二区三区福利-久久精品国产自产对白一区-午夜欧美牲交激情网站| 日韩在线免费av网站-免费啪视频一区二区三区在线观看-久操热在线视频免费观看-91亚洲国产成人精品性色| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 亚洲精品av一区二区日韩-日韩偷拍精品一区二区三区-亚洲欧美熟妇久久久久久-久草视频福利在线观看| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线| 国内一级一厂片内射视频播放磨-国产乐播传媒在线观看-让你操水蜜桃在线观看-深夜三级视频在线观看|