色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The cylinder head is one of the crucial components of an engine, and it is installed above the cylinder block. It seals the top of the cylinders and forms the combustion chamber. The cylinder head is frequently exposed to high-temperature and high-pressure combustion gases, making it subject to significant thermal and mechanical loads.

In water-cooled engines, the cylinder head has internal cooling water passages. These passages are connected to corresponding cooling water passages in the cylinder block. This circulation of coolant helps in cooling the high-temperature components such as the combustion chamber.

4 Important Technical Points for the Machining of Engine Cylinder Heads 2

Characteristics of Engine Cylinder Head Structure

The structure of an engine cylinder head includes the main body, which is equipped with intake ports, exhaust ports, combustion chambers, and a camshaft chamber. The bottom surface is fitted with cylinder liners and is fastened and securely attached to the cylinder block using screws. Its main features are as follows:

1Sufficient Strength and Hardness: The cylinder head is designed with adequate strength and hardness to withstand the gas pressure and thermal stresses during engine operation. Equipped with a base to house the valve train mechanism, it ensures that the cylinder head can function safely under the influence of gas pressure and thermal loads.

 

2Hexahedral Shape: The majority of cylinder heads have a hexahedral shape, featuring multiple openings and being relatively thin. The machining process for cylinder heads can involve numerous intricate features, and the maximum number of machining processes can reach up to 100. The thinnest sections in cast cylinder heads can be as thin as 4.5mm.

cylinder head

The Rough Machining Process of Engine Cylinder Head

1First of all, cylinder heads are generally made of gray cast iron or alloy cast iron. In recent years, aluminum alloy cylinder heads have also been widely used. However, aluminum alloy cylinder heads are prone to deformation during use due to their lower stiffness.

 

2When constructing the cylinder head blank, it is essential to use skilled casting techniques and manufacturing machines for casting units. During the mass production of engine cylinder heads, emulsification flushing is carried out to reduce overheating and burning of the tools. This process also facilitates the removal of metal chips generated during machining and cutting.

 

3Finally, in the machining process, it is crucial to ensure uniform cooling of the casting. Neglecting this aspect can lead to surface looseness in some parts of the rough castings. It is essential to continuously monitor the pouring temperature to avoid failures in the cylinder head. Therefore, during the rough machining of the engine cylinder head, attention should be paid to each step, ensuring correct and diligent operations to guarantee the coordination of the cylinder head’s components and prevent various defects.

 

The Difficulties and Precautions in the Machining Process of Cylinder Head.

Flat Machining Process

The requirements for flat machining processes in cylinder head production are extremely strict. Before proceeding with the machining of the flat grooved cam, it is necessary to inspect it repeatedly from top view and side view and then establish the tool path mode.

The spiral downward cutting method is adopted because this method does not cause vibrations that could affect the workpiece and also helps protect the cutting tool. After the cylinder head component is completed, it should not be quickly removed because the production line is still in a high-temperature state, and premature removal could lead to burns on hands and workpiece deformation. We must wait for the workpiece temperature to dissipate before taking measurements to ensure accurate workpiece dimensions, and then make appropriate adjustments based on the wear of the radius and length.

Furthermore, during flat machining, it is crucial to choose the appropriate cutting position. Selecting the wrong cutting position can result in the entire cylinder head being scrapped.

High-Precision Hole Machining

During mechanical machining processes, there are instances where high precision and concentricity are required for certain positions. In such cases, high-precision hole machining is performed on the components. Using the center through-hole’s center as the reference coordinate, a positioning datum is established. The requirement is for the hole’s center to coincide with the extension of the center through-hole’s diameter. The coordinates for the first hole are determined on the machining center, and then drilling is carried out with the appropriate diameter.

After drilling is completed, measurements are taken to check for any errors, ensuring that the actual hole positions align closely with the ideal positions. Deviation data should be kept within 2mm, and a polishing tool with a finishing edge is used to smoothen the holes. For the high-precision machining of small holes, the axis alignment and perpendicularity to the bottom should be maintained within 0.03mm. Special tooling with front-end supporting seats is used to ensure greater accuracy when creating small holes.

Machining of Cylinder Head Valve and Guide Holes

This part of the machining process directly affects the engine’s performance. During engine operation, the combustible gas is compressed in the cylinder head’s combustion chamber before ignition, resulting in high temperatures in the valves. Therefore, the cylinder head valves must be able to withstand high thermal loads and possess good wear resistance. Additionally, to ensure the coaxiality tolerance of the valve seat and guide hole bottom, it is essential to maintain stable tolerance data and choose the correct position for the positioning datum.

As a result, in practical work, special composite tools are used, and the processing is carried out in three steps: drilling, semi-fine boring, and fine boring. Among these steps, fine boring is a critical process. To enhance the toughness of the slender boring bar, most boring bars are made of hard alloy material. Hard alloy boring bars have about three times greater elasticity than steel, providing better support.

During the final precision machining, in order to ensure high accuracy and reduce positioning errors, the adoption of pinhole positioning is promoted. Additional processing stations are added, and after the completion of valve and guide hole bottom machining, professional personnel further inspect the mechanical safety and determine the position data of the bottom holes.

 

4 Important Technical Points for the Machining of Engine Cylinder Heads 3

Burrs in the Cylinder Head Machining Process

In the cylinder head production and machining process, burrs can be roughly categorized into four types: internal hole burrs, bore burrs, crossover burrs, and edge burrs.

The formation of burrs is caused by the squeezing action of the cutting tool on the cylinder head during the machining process, resulting in excess material beyond the original machining thickness at the edge being removed, leaving behind residual material. Dealing with burrs can be challenging because their positions differ on each component.

One method to remove burrs is by using water jet cutting. High-pressure water jets are used to physically impact and flush the bottom of the cylinder head’s internal holes and difficult-to-clean areas. The ease of high-pressure water jet flushing depends on the hardness of the burrs. When the burr hardness reaches about ten micrometers, the required pressure for the high-pressure water jet is below 30MPA. However, when the burr hardness increases to over one hundred micrometers, higher pressure might be needed for the water jet to effectively cut through the burrs at their roots. The combination of high-pressure water jet action and cutting can completely remove the burrs efficiently and in an environmentally friendly and energy-saving manner.

4 Important Technical Points for the Machining of Engine Cylinder Heads 4

???????

In conclusion, the engine cylinder head, as a critical component of the engine, needs continuous improvement in quality. During the machining and processing of the cylinder head, attention should be given to detail, avoiding scratches on the mating surfaces of the cylinder head. In subsequent machining processes, it is important to inspect and ensure precise positioning of the exhaust side. By implementing a rational and safe engine cylinder head machining process, the quality of the engine cylinder head can be effectively ensured.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

日本道二区二区视频-精品熟女视频一区二区三区国产-国产地区国产地区视频91-亚洲欧洲日产国码综合在线| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 国产偷拍自拍视频在线观看-丰满欧美熟妇视频在线-亚洲午夜激情在线观看-四虎视频精品免费观看| 在线播放口爆吞精美女-亚洲精品中文字幕日韩在线-亚洲福利视频免费在线观看-精品国产自拍免费视频| 青草青青视频精品在线-久热这里只有精品视频免费-免费av一级国产精品-尤物视频网站在线播放| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 女人的天堂av免费看-亚洲欧洲美洲丰满少妇av-精品国产av一区二区二区-性生活视频免费观看在线| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 精品视频在线观看免费一区二区-哪里可以看国产视频一区二区三区-亚洲天堂av在线免费观看-国产大片网站在线观看| 国产精品国产一区日韩一区-老色99久久九九爱精品-国产亚洲精品福利一区-亚洲av乱码av一区二区三区| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 看女人毛茸茸下面视频-日本一区二区黄色高清电影-隔壁人妻偷人中字免费-亚洲中国美女精品久久久| 国产精品乱码一区二区三区-亚洲国产日本不卡一卡-日韩av手机免费网站-国产精品日韩在线亚洲一区| 男人的精品天堂一区二区在线观看-婷婷久久香蕉毛片毛片-久久视频在线观看夫妻-亚洲国产一区久久yourpan| 日韩久久久久久中文字幕-九九热视频精选在线播放-亚洲最大黄色成人av-亚洲最大av一区二区| 特大毛片毛片免费视频-成人伊人青草久久综合网-91亚洲蜜桃内射后入在线观看-日韩情色电影中文字幕| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 精品三级国产三级在线专区-精品一区二区三区视频观看-在线精品日韩亚洲欧一二三区-美女高潮无套内射视频免费| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 欧美日韩在线视频一区不卡-高清自拍最新国产精品-亚洲自偷精品视频自拍-日韩在线不卡中文字幕| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 91天美精东果冻麻豆-亚洲自拍伦理在线观看-国产成人一区二区三区日韩精品-在线中文字幕av日韩| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 日本一区二区三区最新章节-香蕉av久久一区二区三区-久久久国产亚洲精品视频-国产伦精品一区二区三区精品视频| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 美性中文网美性综合网-亚洲最大黄色网在线观看-自偷精品视频三级自拍-97精品伊人久久大香| 国产一级亚洲一级一区-国产精品一亚洲av日韩av-日韩高清有码中文字幕-久久国产精品免费一区二区三区| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 国产丝袜在线精品丝袜不卡-精品一区二区三区爆白浆-在线不卡小视频播放网站-视频二区中文字幕在线播放| 拉风色国产精品一区二区三区-av一级不卡手机在线观看-亚洲欧美日韩国产色另类-青青草伊人视频在线观看|