色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

WC-Co carbide coal mining bits are vulnerable components in coal mining and excavation machinery. They consist of a low-carbide?steel body that has been quenched and tempered, with WC-Co carbide inserts embedded or brazed onto it. The performance of these bits directly affects coal production capacity, power consumption, excavation performance, and excavation costs, making them a critical factor in economic mining.

During coal cutting, mining bits rotate and cut under high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, and intense frictional heat generated by the contact with coal rock. The cutting edge can reach a temperature of 600-800℃, resulting in significant thermal stresses, as well as other mechanical behaviors such as contact fatigue and even fracture. Under such complex working conditions, mining bits are prone to failure. To effectively extend the service life of these bits and reduce coal mining costs, it is crucial to identify their main failure modes and causes by conducting failure analysis.

What are the 3 Main Failure Modes of Carbide Coal Mining Bits and how can We Address Them? 2

1Failure modes

Carbide coal mining bits are subjected to high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, thermal stresses, wear, and other effects during coal cutting. Although coal is not particularly hard, they often encounter harder minerals such as quartz and gangue during operation, resulting in failures such as carbide fracture, wear, and breakage.

2 Failure analysis

2.1 Fracture of coal mining bits

During coal cutting, the carbide tooth is exposed to high compressive stress and impact load, leading to poor contact with the coal seam. The stresses can cause impact fatigue, resulting in cracks and the falling off of large pieces. Fracture occurs when the stress exceeds the bending strength limit of the carbide. In addition, during the cutting process, the temperature of the tooth head rapidly increases due to friction, while it rapidly decreases during idle rotation. This process subjects the carbide tooth to periodic tensile-compressive thermal stress, and with the cyclic action of this stress, thermal fatigue cracks will be produced, leading to the fracture of the mining bits. The insufficient bending strength of the carbide is the main cause of fracture, and micro-defects can also produce stress concentration areas leading to fracture.

 

2.2 Wear of coal mining bits

During the process of coal cutting, the coal mining bits?come into direct contact with coal and rock, which results in mutual abrasion. Due to the existence of impurities such as quartz and coal gangue with strong wear resistance in the coal seam, impact fatigue and abrasive cutting will occur, which will cause abrasive wear failure to the cutting teeth. When the coal mining machine coal mining bits?cut through the coal seam, friction generates heat, resulting in a high temperature of 600-800℃ on the surface of the coal mining bits. The temperature rises and falls alternately, which makes the mining cutting teeth suffer from thermal fatigue wear. Meanwhile, under the alternating impact load, the surface of the coal mining bits?will deform and gradually form microscopic cracks. The cracks will continuously expand under periodic impact loads, and the surface cobalt phase will be preferentially consumed. The WC particles will detach due to the loss of the cobalt phase’s bonding effect, eventually resulting in large-scale peeling of the carbide?particles. In addition, there will also be phenomena of large WC particles breaking and losing during the coal cutting process.

2.3 Fracture of coal mining bits

Hard coal mining bits?contain certain inherent defects such as pores, cobalt pools, surface microcracks, and coarse WC particles, which can cause stress concentration and become the fracture source of the carbide. During the coal mining process, due to repeated impacts, extrusions, and wear, the cobalt phase is preferentially squeezed out and lost. The bonding between the WC particles that are bonded together by the cobalt phase’s bonding effect is destroyed, and the WC particles detach. At the same time, at the site where the WC particles are broken and detached due to the impact load, stress concentration will also occur, which is prone to induce the formation and extension of cracks.

3Measures to Improve the Performance of coal mining bit?

Based on the analysis of the article, the main reasons for the failure of cemented coal mining bits?are:

  1. The bending strength of the carbideis not enough, and the instantaneous impact load during work can easily reach or even exceed the bending strength value of the carbide.
  2. Quartz and gangue in the coal seam cause wear on the carbide.
  3. Fatigue cracks caused by periodic and sudden impact loads and frictional heat generated by severe friction between the coal mining bitsand the coal seam.

Therefore, in order to improve the efficiency of using cemented coal mining bits, efforts should be made to improve the bending strength, wear resistance, and fatigue resistance of the carbide?in the preparation stage. At the same time, the cooling force of the teeth should be increased during use to reduce the hot and cold cycles of the coal mining bits?and prolong their service life.

3.1 Improve the strength and toughness of coal mining bits

Porosity, WC grain size and distribution, and density differences between the upper and lower parts of cemented carbide are the main factors affecting bending strength and toughness. Currently, people mainly use methods such as preparing non-uniform structure cemented carbide, using coarse-grained ore, gradient structure cemented carbide, adding trace elements to modify the bonding phase, and using new molding and sintering processes to improve the strength and toughness of cemented carbide, thereby prolonging the service life of the carbide. The engineers of Metallurgical Ultra Hard Materials Co., Ltd. believe that, under the premise of appropriately reducing the cobalt content of the carbide, cemented carbide with an average grain size of 5.8 μm WC should be produced. By comparing with ordinary cemented carbide, it is found that the bending strength and toughness of the cemented coal mining bits?produced using coarse-grained WC and low Co content have been improved. In other words, while the coarse-grained carbide?has high wear resistance, its strength and toughness have also been improved.

3.2 Improve the wear resistance of coal mining bits

The wear resistance of cemented carbide is determined by the microstructure and chemical composition of the carbide. Currently, in order to ensure that cemented carbide cutting teeth have good strength and toughness, the cobalt content of the cemented carbide carbide?is generally high. People mainly study the microstructure of cemented carbide, adjust the chemical composition of the carbide, and control the mechanical and physical properties of the carbide?(such as strength, hardness, toughness, etc.) to improve the wear resistance of the carbide. An article pointed out that the wear resistance of the carbide?can be effectively improved by minimizing the occurrence and growth of carbide?defects and adding an appropriate amount of rare earth elements.

failure of carbide coal mining bits

3.3 Improve the fatigue resistance of coal mining bits

Cobalt content and WC grain size are the main factors affecting the fatigue resistance of cemented carbide. The production and expansion depth and speed of thermal fatigue cracks gradually decrease with the increase of cobalt content or WC grain size in the carbide. In addition, the increase in WC grain size will also increase the average free path of the cobalt phase, thereby improving the fatigue resistance of the carbide.

???????

Metyou Carbide Co., Ltd. has conducted a failure analysis on the used carbide coal-cutting teeth recovered from customers and reached the following conclusions:

1)the main forms of carbide coal-cutting teeth failure are fracture, wear, and breakage.

2) the main causes of coal mining bits?failure are insufficient bending strength, poor wear resistance, and poor fatigue resistance of the carbide.

3) the service life of carbide coal-cutting teeth can be improved by means of improving the purity of raw materials, changing the carbide?composition, optimizing the forming and sintering process, controlling the grain size of the carbide, and conducting heat treatment on the carbide.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 国产精品女同一区二区久久夜-日本精品女人一区二区三区-亚洲成人久久久久久-激情五月婷婷综合激情| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 在线播放口爆吞精美女-亚洲精品中文字幕日韩在线-亚洲福利视频免费在线观看-精品国产自拍免费视频| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 欧美日韩在线有码中文-亚洲美女一区二区暴力深喉吞精-亚洲av日韩一区二区三区-国产激情视频在线观看播放| 免费在线观看午夜视频-成人性生交大片免费网站-国产一区二区精品久久胖女人-亚州综合国产精品天码av| 看日本全黄色免费a级-丝袜美腿在线观看视频一区-亚洲av熟女国产一二三-国产日韩av一区二区三区蜜臀| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 日本在线观看一区二区免费-日本一区二区精品在线观看-老湿机午夜免费在线观看-成人在线永久免费观看| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 日本老熟妇在线视频网-精品人妻在线一区二区三区视频-91亚洲国产成人精品福利-青青草免费手机直播视频| 91福利精品第一导航-国产一区二区三区不卡精品-偷拍日本美女公厕尿尿-国产黄三级三级三级看三级| 中文字幕久久精品一区二区三区-99国产麻豆精品人人爱-91麻豆精品福利视频-国产精品亚洲一区中文字幕| 国产精品内射在线免费看-99久久国产精品一区二区三区-久久国产精品午夜福利-亚洲av精品一区二区三区| 日韩bd高清电影一区二区-久久亚洲国产精品久久-亚洲精品国产精品av-大胸少妇av网站在线播放| 久久国产精品一品二品-国产二区中文字幕在线观看-极品性感尤物少妇粉嫩逼-亚洲成人av男人的天堂网| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 成熟女人毛茸茸的视频-国产亚洲精品综合一区二区-国产一区二区三区麻豆视频-国产精品自拍实拍在线看| 少妇高潮了好爽在线观看男-麻豆国产传媒国产免费-欧美三级黄片在线播放-亚洲一区域二区域三区域四| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码| 一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| 国产成人午夜精品久久-91久久精品一区二区喷水喷白浆-中文字幕日本人妻99-美女人妻少妇一区二区三区| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 日韩精品一区二区蜜桃免费视频-色综合视频一区二区三区-欧美一级黄片视频在线播放-国产精品视频一区二区色戒| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 国产二区三区视频在线观看-四虎精品一区二区在线观看-国产中文字幕一区二区视频-精品一区二区三区av在线| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 亚洲精品人妻中文在线-国产成人精品视频三级-麻豆视频黄片在线免费观看-亚洲性色精品一区二区在线|