色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Wet milling can grind hard phases (mainly WC phase) to the required particle size and achieve a uniform mixing state with Co powder in a small range, which has good compaction and sintering properties. Therefore, the wet milling time is also one of the key parameters in the preparation process of hard alloys. This article mainly studies the influence of wet milling time on the microstructure and properties of hard alloys.

Experimental materials for wet milling and methods

The recycled WC-Co composite powder produced by zinc melting method was used as the experimental material, and its composition is shown in Table 1.

????? ??? ????? ????? ??? ?????? ???????? ?????? YG8 (ISO K30) ????? ??????? 2

Laser particle size analysis showed that the median diameter was 3.46μm, with a narrow range of particle size distribution and relatively concentrated particle size. Figure 1 shows the SEM image of the original morphology of the WC-Co composite powder.

Effects of Wet?milling Time on Microstructure and Properties of YG8(ISO K30) Cemented Carbide 3

From Fig.1, it is evident that the recycled powder has mild agglomeration, and its morphology is mostly triangular or rectangular with smooth edges, retaining the characteristics of WC grains in hard alloys. The average particle size of the powder is about 3μm, which is consistent with the results obtained from laser particle size analysis.

 

Figure 2 shows the XRD spectrum of the WC-Co composite powder.

????? ??? ????? ????? ??? ?????? ???????? ?????? YG8 (ISO K30) ????? ??????? 4

Experimental Results and Discussion about wet milling time

Figure 3 shows the morphology of WC-Co composite powders after different wet milling?times. As shown in Figure 3(a), when wet milling?for 18 hours, the powder size is relatively large and unevenly distributed, indicating that the wet milling?effect is not ideal, and the collision between the grinding balls and the powder in the tank is insufficient, and the powder refinement is not enough. After wet milling?for 24 hours (Figure 3(b)), it was found that the powder size decreased rapidly, and the refinement was obvious, but the uniformity was limited. It can be observed that the powder fragmentation mainly occurred due to the repeated impact and friction of the grinding balls, resulting in the rupture of large particles into smaller particles. Continuing wet milling?until 30 hours (Figure 3(c)), it can be found that there is not much change in the powder size, but the uniformity and morphology have improved, with an average particle size between 1 and 2 μm. This indicates that the powder wet ground for 30 hours has a relatively ideal particle size and morphology. Apart from the rupture, the powder is mainly worn out (WC corners are worn out, producing fine powder). Finally, after wet milling?for 36 hours, it is evident that the powder not only did not refine further but also showed agglomeration phenomenon B (see Figure 3(d)).

wet milling time

 

It should be noted that the powder cannot be infinitely refined during ball milling. During ball milling, as the particle size of the powder decreases, the specific surface area of the powder increases exponentially, exhibiting high surface energy and a sharp increase in reactivity, making it easy to agglomerate and bond with other powders to resist the increase in total energy. As a result, on the one hand, external energy is input into the powder, causing it to refine; on the other hand, the powder agglomerates and forms lumps, reducing the system energy. After the combined effect of these two trends, a dynamic equilibrium is reached between them, and the average particle size of the powder will eventually stabilize within a certain range. In this experiment, the powder was ball milled for 30 hours, and its uniformity was good, with a particle size reaching an equilibrium value (1-2 μm).

Figure 4 shows the XRD patterns of sintered regenerated cemented carbide with different wet milling times. As shown in the figure, when wet milled for 18 hours, the alloy contains impurity phase of elemental carbon (C); as wet milling continues, the elemental carbon disappears. This indicates that the alloy is slightly carburized during wet milling for 18 hours, and as the wet milling time is prolonged, the powder is refined and the surface adsorbs more oxygen, resulting in an increase in the oxygen content of the mixture. During sintering, part of the carbon is consumed, resulting in the formation of a pure two-phase structure of WC and Co in the alloy, and no other impurity phases were found.

????? ??? ????? ????? ??? ?????? ???????? ?????? YG8 (ISO K30) ????? ??????? 5

Figure 5 shows the metallographic images of the cemented carbide after corrosion for different wet milling times. Comparing Figures 5 (a) to (d), it can be seen that under the sintering process (1723 K, pressure), the alloy structure is good, and no defects such as abnormally large WC grains and cobalt pools were found. The grain size of the alloy is slightly smaller with a polygonal morphology after wet milling for 24 hours compared to 18 hours, and the Co phase is evenly distributed. As wet milling continues, there is no significant change in grain size, but the uniformity slightly improves. When wet milled for 36 hours, it was found that the WC grains had slightly grown, which may be related to the partial agglomeration of the powder during wet milling.

????? ??? ????? ????? ??? ?????? ???????? ?????? YG8 (ISO K30) ????? ??????? 6

It is worth noting that as the wet milling?time increases, the strength of the alloy shows a continuous upward trend, but the magnitude of the increase becomes smaller and smaller. Generally, for the same Co content and without obvious defects, the strength of the alloy is related to the distribution of internal micro-pores and WC grain size. When wet milling?for 18 hours, due to the short time, the material mixing is uneven, the powder refinement degree is insufficient, the particle size is large, and the distribution is uneven, resulting in the easy formation of micro-pores during sintering, thus the alloy strength is not high. Continuing wet milling?further breaks down the powder particles, increases the number of fine WC particles, narrows the WC particle size distribution towards homogenization, and eliminates the coarse WC grains, which are the main sources of cracks, resulting in an increase in the bending strength of the alloy.

In WC-Co alloys with the same Co content, the coercive force of the alloy is inversely proportional to the WC grain size and distribution, which is consistent with the description in Figure 5.

????? ??? ????? ????? ??? ?????? ???????? ?????? YG8 (ISO K30) ????? ??????? 7

Figure 6 shows the distribution of flexural strength for regenerated cemented carbides with different wet milling times. Based on Figure 6, the range of strength values for each alloy can be observed, which gives the variation of the strength of the statistical samples. It can be seen from the figure that there are many overlaps and dispersions in the experimental results. It is easy to find that with the extension of wet milling time, not only the strength of the alloy increases, but also the fluctuation range becomes narrower, and each strength value is closer to each other. This indicates that the extension of wet milling time can reduce the discreteness of the strength distribution of regenerated cemented carbides.

 

???????

Under the experimental conditions of this study, the effects of different wet milling?times on the microstructure and properties of recycled WC-8Co composite powder and sintered hard alloys were investigated, and the following conclusions were drawn:

  1. Continuous wet millingfor 30 hours with a ball-to-powder ratio of 3:1 resulted in fine and uniformly distributed composite powder with an average particle size of 1-2 μm, as observed by SEM.
  2. Under the conditions of continuous wet millingfor 36 hours with a ball-to-powder ratio of 3:1 and sintering process (1723 K for 1 hour with a pressure of 5 MPa), the alloy exhibited the best comprehensive properties. Its density was 14.71 g/cm3, HRA90.1, the average strength was 3560 MPa, cobalt magnetism was 7.2%, and coercivity was 15.8 kA/m.
  3. The analysis of the strength distribution of alloys with different wet millingtimes showed that within a certain range, the prolongation of wet milling?time can reduce the discreteness of the strength distribution of recycled hard alloys.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

国产a国产片免费观看-国产男女羞羞的视频在线观看-熟女亚洲综合精品伊人久久-国产精品av中文字幕| 正在播粉嫩丰满国产极品-国产成人午夜福利av在线-国产精品自拍自在线播放-一区二区三区四区日本视频| 日韩成人大片一区二区三区-国产一级淫片av免费-18禁免费观看网站入口-国产黄色特级片一区二区三区| 亚洲精品色国语对白在线-黄片毛片av在线免费观看-久久精品有码av天堂-日韩一区二区三区高清视频| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 亚洲综合精品一区二区在线-国产亚洲精品视频在线播放-国产精品经典三级免费观看-五月婷婷六月丁香视频| 亚洲国产成人精品毛片九色-成年片黄色大片品赏网-亚洲男人天堂色噜噜av-人妻免费精品久久一区| 日韩av不卡一区二区-国产白丝精品91久久-午夜福利理论片在线播放-国产粉饼哪个牌子好用| 国产人妖直男在线视频-午夜福利视频合集91-亚洲五月自拍欧美第一页-国产主播免费在线一区二区| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 国内一级一厂片内射视频播放磨-国产乐播传媒在线观看-让你操水蜜桃在线观看-深夜三级视频在线观看| 办公室女厕偷拍美女撒尿-日本成人看片一区二区在线-丰满熟女少妇午夜福利-少妇被爽到高潮在线观看| 天堂国产精品一区二区三区-亚洲欧美日韩国产精品久久-av毛片黄片在线观看-尤物国产视频在线观看| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 日韩精品成人一区二区三区-亚洲综合中文字幕第一页-久久伊人亚洲中文字幕-花季传媒视频无限制观看| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 国产美女口爆吞精服务-亚洲无人区码一码二码三码-久久精品99国产精品最新-日本少妇激情在线视频| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 国产人妻熟女呻吟在线观看-国产成人免费视频观看-国产久久热这里只有精品-中文字幕女同女同女同| 欧美日韩国产在线三级-少妇人妻精品一区二区三-调教熟妇女同在线观看中文字幕-亚洲成av人片一区二区三区不卡| 91久久国产亚洲精品-亚洲第一区二区三区女厕偷拍-国产在线精品中文字幕-久久老熟妇精品免费观看| 久久女婷五月综合色啪色老板-国内不卡的一区二区三区中文字幕-在线观看一区二区三区日韩-五月天丁香婷婷狠狠狠| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 日韩成人动漫视频在线-人妻日韩精品中文字幕-国产老妇伦国产熟女老妇久-久久精品人妻一区二区三区| 亚洲三级免费在线播放-国产男女做a视频免费在线观看-六月婷婷缴情七月丁香-国产黄色片三级久久久| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人| 18禁成人一区二区三区av-亚洲热热日韩精品中文字幕-亚洲中文字幕视频第一二区-亚洲国产日韩精品在线| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 久久中文字幕亚洲天堂-午夜国产成人福利视频-亚欧天堂成人av成人-熟女乱中文字幕熟女熟妇| 日韩成人深夜免费在线观看-成人av一区二区在线播放-日韩无套内射免费精品-国产精品一区白嫩在线观看| 91免费视频完整版高清-久久青草国产日韩资源-黄色激情网站免费提供-国产精品麻豆三级一区视频| 精品亚洲无线一区人人爽人人澡人人妻-国产欧美一区二区综合日本-亚洲天堂中文字幕君一二三四-九九热视频这里有精品| 国产精品一区二区三区四区-日本毛茸茸的丰满熟妇-中文字幕久久中文字幕久久-国产成人三级一区二区在线观看|