色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

?? ?????? ????? ????? ?? ????? (HL) ???? ??? ??? ?? ????? ?? ????? ?????? ??????.

On January 10, 1954, a comet of BOAC disintegrated 7800 meters above Elba, Italy.

On April 8, another “comet” of BOAC crashed into the bay of Naples, Italy, killing 21 people on board. So far, all comets have been grounded.

The frequent fall of comets shocked the world. ?

At that time, British Prime Minister Winston Churchill ordered us to find out the cause of the accident at all costs.

To this end, the British Navy sent out a fleet to salvage the wreckage of the plane near Elba Island from the bottom of the sea hundreds of meters deep, and sent it to the Royal Aircraft Research Institute for investigation.

The investigation found that there were cracks in the lungs of the air crash victims caused by gas expansion, indicating that the sudden decrease of air pressure in the cabin before the crash led to the rapid expansion of gas in the lungs, which led to the rupture of the lungs. Research on the wreckage of the plane showed that cracks appeared in some portholes, which was consistent with the autopsy findings.

At the same time, de havilan company carried out strict inspection on the aircraft under production and grounded. The test lasted more than 9000 hours, and cracks appeared on the aircraft skin, just like the cracks on the wreckage of the crashed aircraft.

According to the research and analysis of the technicians, the accident was caused by the “fatigue” of the metal materials used to make the aircraft body structure.

Under the action of alternating pressure, after a period of time, micro cracks are formed in the local high stress area, and then the micro cracks are gradually extended to fracture.

Fatigue failure has the characteristics of sudden in time, local in location and sensitivity to environment and defects, so it is not easy to be found in time.

Under the impact of repeated pressurization and decompression, the skin at the square porthole of comet aircraft deforms and cracks, which eventually leads to metal fatigue fracture. As the first kind of jetliner in the world, “comet” flies faster than other jetliners, and naturally bears more pressure, which makes it easier to cause metal fatigue.

Thus, through the investigation of the comet accident, a new subject – “fatigue mechanics” was born.

Today we will be familiar with and understand about: fatigue curve and basic fatigue mechanical properties.

Fatigue curve and symmetrical cycle fatigue curve

(1) Fatigue curve and fatigue limit

Fatigue curve: it is the relationship curve between fatigue stress and fatigue life, i.e. S-N curve, which is the basis for determining fatigue limit and establishing fatigue stress criterion.

For metal materials with strain aging, such as carbon steel and ductile iron, when the cyclic stress level drops to a certain critical value, the low stress section becomes a horizontal section, which indicates that the specimen can undergo infinite stress cycles without fatigue fracture. Therefore, the corresponding stress is called fatigue limit, which is denoted as σ – 1 (symmetric cycle, r = – 1).

If this kind of material does not fracture after 107 stress cycles, it can be considered that it will not fracture even if it is subjected to infinite stress cycles, so 107 cycles is often used as the base for determining the fatigue limit.

Another kind of metal materials, such as aluminum alloy and stainless steel, has no horizontal part in S-N curve, but increases with the decrease of stress. At this time, the stress without fracture in a certain cycle can only be defined as the conditional fatigue limit, or finite life fatigue limit, according to the service requirements of materials.

(2) Determination of fatigue curve

Generally, the fatigue curve is measured by rotating bending fatigue test. The principle of four point bending test machine is shown in the figure below.

The high stress (finite life) part of S-N curve was measured by group test method, that is, the higher stress level of 3-4 was taken, and the data of about 5 samples were measured under each stress level, and then the data was processed to calculate the median (survival rate 50%) fatigue life.

The median S-N curve with a survival rate of 50% can be obtained by using the σ – 1 measured by the ascending and descending method as the lowest stress level point of the S-N curve and fitting it with the results measured by the group test method into a straight line or curve.

(3) Fatigue limit under different stress states

The fatigue limit of the same material is different under different stress states, but there is a certain relationship between them.

The results show that there is a certain relationship between symmetrical bending fatigue limit and symmetrical tension compression and torsion fatigue limit.

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 2

(4) Relationship between fatigue limit and static strength

The test shows that the greater the tensile strength of metal material, the greater the fatigue limit.

For medium and low strength steels, there is a linear relationship between fatigue limit and tensile strength.

When σ B is low, it can be approximately written as σ – 1 = σ B.

When σ B is higher, the near linear relationship will deviate, which is due to the decrease of plasticity and fracture toughness and the easy formation and propagation of cracks.

Fatigue diagram and asymmetrical cyclic fatigue limit

Many parts work under asymmetric cyclic load, so it is necessary to measure the asymmetric cyclic fatigue limit of materials to meet the needs of design and material selection of such parts.

The fatigue limits of various asymmetrical cycles are usually obtained from the fatigue diagram by engineering drawing method.

According to different drawing methods, there are two kinds of fatigue diagrams

(1) σ a – σ m fatigue diagram

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 3

Under the condition of different stress ratio R, the fatigue limit σ r expressed by σ Max is decomposed into σ A and σ m, and the fatigue diagram of σ a – σ m is obtained by making ABC curve in the coordinate system.

(2) σ max (σ min) – σ m fatigue diagram

How the Concept of Fatigue was Created and Some Thing Have-to-Know about it 4

The fatigue limit under different stress ratio R is expressed by σ max (σ min) and σ m respectively in the coordinate system to form the fatigue diagram.

AHB is the fatigue limit σ Max under different R.  

The fatigue limit increases with the increase of average stress or stress ratio, but the stress amplitude a decreases.

Fatigue overload resistance

The original fatigue limit of the material may not change or decrease when the metal parts are subjected to short-term overload occasionally, which depends on the overload stress of the material and the corresponding cumulative overload cycles.  

If the metal runs for a certain number of cycles at a stress level higher than the fatigue limit, its fatigue limit and fatigue life will decrease, which will cause overload damage.

The ability of metal material to resist fatigue overload damage is expressed by overload damage boundary or overload damage area.

The overload damage boundary is determined by experiments: different overload stress levels and corresponding stress cycles that begin to reduce fatigue life are measured, and different test points are obtained. The overload damage boundary is obtained by connecting each point. The two queries are not favorable

The shadow line area between the overload damage boundary and the straight line section of the high stress area of the fatigue curve (the stress cycle of fatigue fracture under each stress level of this section is called the overload endurance value) is called the overload damage area.

When the parts are overloaded in this area, the fatigue limit of the material will be reduced in varying degrees, and the more the fatigue limit is reduced near the endurance value.

The steeper the overload damage boundary (or overload endurance value) is and the narrower the damage area is, the stronger the ability of resisting fatigue overload is.

Fatigue notch sensitivity

Due to the need of use, parts often have steps, corners, keyways, oil holes, threads and so on. These structures are similar to notch effect, which will change the stress state and cause stress concentration.

So it is important to understand the effect of stress concentration caused by notch on fatigue limit.

There are two extreme cases when evaluating materials according to fatigue notch sensitivity

(a) KF = KT, that is to say, the stress distribution of notched specimen is exactly the same as that of elastic state, and there is no stress redistribution. At this time, the notch reduces the fatigue limit most seriously, and the fatigue notch sensitivity QF = 1, and the notch sensitivity of material is the largest.

(b) KF = 1, σ – 1 = σ – 1n, the notch does not reduce the fatigue limit, which indicates that the stress has a great redistribution in the fatigue process, the stress concentration effect is completely eliminated, QF = 0, the notch sensitivity of the material is the smallest.

Therefore, QF value can reflect the ability of material to redistribute stress and reduce stress concentration during fatigue.

High cycle fatigue: most metals are very sensitive to notches; ears are broken

In low cycle fatigue, most metals are not sensitive to notch, because the notch root area of the latter is in the plastic zone, resulting in stress relaxation and stress concentration reduction.

无套内射在线免费观看-亚洲日本va中文字幕久-日韩免费人妻av一区二区三区-热久久国产最新地址获取| 国产精品国产三级国产专区55-伊人久久大香线蕉亚洲-av男人的天堂在线观看-国产女主播在线一区二区三区| 亚洲人妻精品中文字幕-国产黄色性生活一级片-日韩人妻系列在线视频-精品国产看高清av毛片| 日韩中文有码字幕在线观看-黑人国产一区二区三区-久久国产精品久久精品-国产激情在线一区二区三区| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 国产在线观看av自拍-成人自拍小视频在线看-十八禁网站在线免费观看-丰满的熟妇露脸大屁股| 99精品国产在热久久婷婷人-黄色av一区二区在线-精品一区二区三区中文字幕在线-久久91国产人妻熟女| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 欧美日韩激情免费观看-成年大片免费视频观看-俺来也去也网激情五月-在线国产精品自偷自拍| 成人高清视频在线播放-91麻豆免费观看视频-久久婷香五月综合色吧-自拍自产精品免费在线| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 久久久免费福利视频观看-成年人在线观看视频免费播放-噜噜中文字幕一区二区三区-视频一区视频二区三区| 亚洲黄色精品在线播放-国产精品对白在线播放-日韩熟女熟妇久久精品综合-人妻人妻少妇在线系列| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 中文字幕国产剧情av-久久精品日韩欧美精品-玖玖热视频这里只有精品-国产黄色三级视频网站| 久久超碰97中文字幕亚洲-亚洲成人精品在线一区二区-亚洲天天操夜夜操狠狠操-久久午夜鲁丝片午夜精品| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放| 久久久久亚洲av成人精品-久久精品成人一区二区-国产精品呻吟久久人妻无吗-国产欧洲日本一区二区| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩| 国产亚洲精品视频自拍-激情五月开心五月婷婷-日本少妇三级交换做爰做-国产日韩三级中文字幕| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 国产一区二区三区精品视频导航-精品国产av网站大全-男女草逼视频网站大全-国内成人在线激情视频| 亚洲欧美成人影院网址-在线观看视频一区二区三区三州-成人自拍视频免费在线-国产精品蜜臀视频视频| 午夜性色福利在线视频福利-久久精品视频免费获取地址-亚洲一区二区三区在线观看不卡-无套进入美女免费观看视频| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 看日本全黄色免费a级-丝袜美腿在线观看视频一区-亚洲av熟女国产一二三-国产日韩av一区二区三区蜜臀| 精品国产自产在线观看-四虎av一区二区在线观看-91久久精品人妻中文字幕-av网页一区二区三区| 国产精品人成在线播放蜜臀-老司机午夜福利视频在线-亚洲激情av免费观看-国产情侣91在线观看| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 一区二区在线观看黑人-久久久精品人妻一区二区三区综合-成人内射国产免费观看-四虎在线免费视频观看| 日韩中文字幕精品人妻-国产欧美亚洲91在线-亚洲欧美激情第一欧美精品-精品视频美女久久久中文字幕| 国内一级一厂片内射视频播放磨-国产乐播传媒在线观看-让你操水蜜桃在线观看-深夜三级视频在线观看| 中文在线字幕亚洲精品-91麻豆天美精东蜜桃专区-黄色av电影免费在线观看-国产三级四级在线播放| 97视频在线观看精品在线-久久精品欧美日韩一区麻豆-亚洲精品在线少妇内射-国产在线一区二区三区三州| 日本一区二区三区四区在线-黄色激情免费看国产看片-微拍福利一区二区视频-日本高清免费不卡观看| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看|