色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

What is nanomaterial?

Nanomaterial: All the Stats, Facts, and Data You'll Ever Need to Know 1

Introduction: The nano concept is 1959, and the Nobel Prize was presented by Richard Feynman in a speech. In his “There is plenty of room at the bottom” speech, he mentioned that humans can make machines smaller than their size with macroscopic machines, and this smaller machine can make smaller machines, thus achieving molecular scale step by step. That is, the production equipment is reduced step by step, and finally the atoms are arranged directly according to the wishes, and the products are manufactured. He predicted that chemistry would become a technical problem of accurately placing atoms one by one according to the wishes of human beings. This is the earliest idea with modern nano concepts. In the late 1980s and early 1990s, an important tool for characterizing nanometer scales, scanning tunneling microscopy (STM), and atomic force microscopy (AFM), a direct tool for understanding nanoscale and nanoworld materials, has greatly facilitated On the scale of understanding the structure of matter and the relationship between structure and nature, nanotechnology terminology emerged and nanotechnology was formed.
In fact, nano is just a unit of length, 1 nanometer (nm) = 10 and negative 3 times square micron = 10 and negative 6th power millimeter (mm) = 10 and minus 9 times square meters (m) = l0A. Nanoscience and Technology (Nano-ST) is a science and technology that studies the laws and interactions of systems consisting of substances between 1-100 nm in size and possible technical problems in practical applications.

1 nanometer material characteristics

Nano is a unit of measurement, 1 nm is a millionth of a millimeter, that is, 1 nanometer, that is, a billionth of a meter, and an atom is about 0 1 nm. Nanomaterials are a new type of ultra-fine solid material composed of nanoparticles, which are from 1 to 100 nm in size. Nanotechnology is the study and study of substances and materials on tiny structures below 100 nm, that is, the science and technology of making substances with a single atom or molecule.
Nanoparticles are atomic groups or groups of molecules consisting of a small number of atoms and molecules. The surface of a large proportion is originally an amorphous layer with neither long procedures nor short procedures: inside the particles, there is a well-crystallized layer. Periodically arranged atoms, but their structure is different from the completely long program structure of the crystal sample. It is this special structure of nanoparticles that leads to the singular surface effects, small size effects, quantum size effects, quantum tunneling effects of nanoparticles, and thus the physical and chemical properties of many nanomaterials different from conventional materials.

1.1 Surface and interface effects

The surface effect of the nanomaterial, that is, the ratio of the atomic to total atomic number of the nanoparticle increases with the decrease of the size of the nanoparticle, and the surface energy and surface tension of the particle also increase, which causes the change of the properties of the nanometer. For example, the specific surface area of SiC with a particle size of 5 nm is as high as 300 /12/g; while the surface area of nano-tin oxide varies more with particle size, and the specific surface area at 10 lltlfl is 90.3 m2/g, compared with 5 nm. The surface area increased to 181 m2/g, and when the particle size was less than 2 nm, the specific surface area jumped to 450 m2/g. Such a large specific surface area greatly increases the number of atoms at the surface. The crystal field environment and binding energy of these attacking atoms are different from those of internal atoms. There are a large number of defects and many dangling bonds, which have high unsaturated properties, which makes these atoms easy to combine with other atoms. It is stable and has a high chemical reactivity.
In addition, the surface energy of the highly activated nanoparticles is also high, and the specific surface area and surface area can make the nanoparticles have strong chemical reactivity. For example, metal nanoparticles can burn in the air. Some oxide nanoparticles are exposed to the atmosphere and adsorb gases and react with gases. In addition, nanomaterials have new optical and electrical properties due to the original malformation of the surface of the nanoparticles, which also causes changes in surface electron spin conformation and electron energy potential. For example, some oxide and nitride nanoparticles have a good absorption and emission effect on infrared rays and have a good shielding effect on ultraviolet rays.

1.2 small size effect

When the size of the ultrafine particles is equal to or smaller than the physical feature size such as the wavelength of the light wave, the wavelength of De Broglie, and the coherence length or transmission depth of the superconducting state, the periodic boundary conditions will be destroyed, sound, light, electromagnetic, thermodynamics, etc. Features will present a new size effect. For example, the light absorption significantly increases and produces a plasmon resonance frequency shift of the absorption peak; the magnetic ordered state is in a magnetic disordered state, and the superconducting phase is converted to a normal phase; the phonon spectrum is changed. These small size effects of nanoparticles are practical
Expanded new areas. For example, silver has a melting point of 900’C, and the melting point of nanosilver can be reduced to 100, C, which provides a new process for the powder metallurgy industry. By utilizing the properties of particle size change of plasmon resonance frequency, the displacement of the absorption edge can be controlled by changing the particle size, and a microwave absorption nano material having a certain bandwidth can be manufactured for electromagnetic wave shielding, stealth aircraft and the like.

1. 3 quantum size effect

When the particle size drops to a certain value, the electron energy level near the Fermi level changes from quasi-continuous to discrete energy level. The relationship is:
Where: £ is the energy level spacing; E is the Fermi level; N is the total electron number. Macroscopic objects contain an infinite number of atoms (ie, the number of electrons contained, N), so 0, that is, the energy level spacing of large particles or macroscopic objects is almost zero; while the nanoparticles contain a limited number of atoms, and the value of N is small, resulting in a certain The value of the energy level is split. The electron energy spectrum of a bulk metal is a quasi-continuous energy band. When the energy level spacing is greater than the thermal energy, magnetic energy, magnetostatic energy, electrostatic energy, photon energy or superconducting condensed energy, the quantum effect must be considered, which leads to the nanoparticle. Magnetic, optical, acoustic, thermal, electrical, and superconducting properties are significantly different from macroscopic properties, known as quantum size effects.

1.4 Physical characteristics

The physical effects of nanomaterials include magnetic and optical properties.
The diameter of the nanomaterial is small, and the material is mainly composed of ionic bonds and covalent bonds. Compared with crystals, the absorption capacity of light is enhanced, showing the characteristics of wide frequency band, strong absorption, and low reflectance. For example, although various block metals have different colors, all metals appear black when they are refined to nano-sized particles; some objects also exhibit new luminescence phenomena, such as silicon itself, which is not illuminating, However, nano-silicon has a phenomenon of luminescence.
Due to the small diameter of the nanomaterials, the atoms and molecules are more exposed, the magnetic rows are more random and more irregular, and therefore, the nanomaterials are superparamagnetic.

1.5 chemical characteristics

The chemical effects of nanomaterials include adsorption and catalysis.
Nanomaterials have a large specific surface area. It makes it have stronger adsorption properties for other substances.
Nanomaterials can be used as high education catalysts. Due to the small size of the nanoparticles, the volume percentage of the surface is large, the bond state and the electronic state of the surface are different from the inside of the particles, and the surface atomic coordination is incomplete, which leads to an increase in the active position of the surface, which makes it have the basic conditions as a catalyst. . There are three main aspects of the role of nanomaterials as catalysts:
(1) changing the reaction rate and improving the reaction efficiency;
(2) Determine the reaction route and have excellent selectivity, such as hydrogenation and dehydrogenation only, without hydrogenation decomposition and dehydration;
(3) Lower the reaction temperature. For example, a catalyst prepared by using ultrafine particles of Ni and Cu-mon alloy having a particle diameter of less than 0.3 nm as a main component can make the hydrogenation efficiency of organic matter 10 times that of a conventional nickel catalyst; ultrafine PL powder and WC powder. It is a highly efficient hydrogenation catalyst; ultrafine Fe, Ni and Fe02, mixed light sintered body can replace precious metal as automobile exhaust gas purifying agent; ultrafine Aug powder can be used as catalyst for acetylene oxidation.

2. Preparation of nanometer materials

There are many ways to prepare nanomaterials. According to whether there is obvious chemical reaction during the preparation process, it can be divided into physical preparation methods and chemical preparation methods. The physical preparation methods include a mechanical grinding method, a dry impact method, a blending method, and a high temperature evaporation method; and the chemical preparation method includes a sol-gel method, a precipitation method, and a solvent evaporation method.

3. Application of nanometer materials in textile field

It is precisely because of these peculiar properties of nanoparticles that it lays the foundation for its wide application. For example, nanoparticles have special UV resistance, absorption of visible light and infrared rays, anti-aging, high strength and toughness, good electrical and electrostatic shielding effects, strong antibacterial deodorizing function and adsorption capacity, and the like. Therefore, by combining nanoparticles having these special functions with textile raw materials, it is possible to manufacture new textile raw materials, nano-pastes, and to improve fabric functions.

3.1 anti-ultraviolet, anti-sun and anti-aging fiber

The so-called anti-ultraviolet fiber refers to the fiber which has strong absorption and reflection properties to ultraviolet light. The principle of preparation and processing is usually to add ultraviolet shielding material to the fiber to be mixed and treated to improve the absorption and reflection of ultraviolet rays by the fiber. ability. The substances that can block ultraviolet rays here refer to two types, that is, substances that reflect ultraviolet rays, which are customarily called ultraviolet shielding agents, and have strong selective absorption of ultraviolet rays, and can perform energy conversion to reduce the amount of permeation thereof. Substance, customarily known as UV absorbers. Ultraviolet shielding agents usually use some metal oxide powders, and there are many varieties of UV absorbers at home and abroad. Commonly used are salicylate compounds, metal ion chelate compounds, benzophenones and benzotriazoles. . A small amount of nano-TiO 2 is added to the synthetic fiber by using the excellent light absorption characteristics of the nanoparticles. Because it can shield a large amount of ultraviolet rays, the garments and articles made of the same have the effect of blocking ultraviolet rays, and have an auxiliary effect on preventing skin diseases and skin diseases caused by ultraviolet absorption.

3.2 antibacterial fiber

Some metal particles (such as nano-silver particles, nano-copper particles) have certain bactericidal properties, and they are combined with chemical fiber to produce anti-bacterial fibers, which have stronger antibacterial effect and more washability than general antibacterial fabrics. frequency. For example, the ultra-fine antibacterial powder developed by the National Ultrafine Powder Engineering Center can impart antibacterial ability to resin products and inhibit various bacteria, fungi and molds. The core of the antibacterial powder may be a nanoparticle of barium sulfate or zinc oxide, coated with silver for antibacterial, and surrounded by copper oxide and zinc silicate to resist fungus. By adding 1% of this powder to the Taiwanese fiber, an antibacterial fiber having good spinnability can be obtained.

3.3 far infrared fiber

Some nano-scale ceramic powders (such as zirconia single crystals, far-infrared negative oxygen ion ceramic powders) are dispersed into a melt spinning solution and then spun into fibers. This fiber can effectively absorb external energy and radiate far infrared rays that are the same as the human body’s biological spectrum. This far-infrared radiation wave is not only easily absorbed by the human body, but also has a strong penetrating power. It can penetrate deep into the skin and cause deep resonance of the skin to produce a resonance effect. It activates biological cells, promotes blood circulation, strengthens metabolism, and enhances.
Health care such as tissue regeneration.

3.4 High-strength wear-resistant new materials

The nanomaterial itself has the characteristics of super strong, high hardness and high toughness. When it is integrated with chemical fiber, the chemical fiber will have high strength, high hardness and high toughness. For example, carbon nanotubes are used as composite additives, and have great development prospects in aerospace textile materials, automotive tire cords and other engineering textile materials.

3.5 stealth textile materials

Some nano-materials (such as carbon nanotubes) have good absorbing properties, and they can be used to add light to the textile fiber. The nano-materials have the characteristics of wide band, strong absorption and low reflectivity of light waves, so that the fibers do not reflect light. It is used to make special-purpose anti-reflective fabrics (such as military invisible fabrics).

3. 6 antistatic fiber

Adding metal nano-materials or carbon nano-materials in the process of chemical fiber spinning can make the spun filaments have antistatic and microwave-proof properties. For example, carbon nanotubes are a very excellent electrical conductor. Their conductivity is better than that of copper. It is used as a functional additive to stably disperse in chemical fiber spinning solution. It can be made at different molar concentrations. Fiber and fabric with good electrical conductivity or antistatic properties.

3.7 anti-electromagnetic fiber

High dielectric insulating fibers can be obtained by adding nano-SiO 2 to the synthetic fiber. In recent years, with the continuous development of communication and household appliances, the use of mobile phones, televisions, computers, microwave ovens, etc. is becoming more and more common. Electromagnetic fields exist around all electrical equipment and wires, and electromagnetic waves are on the human heart, nerves, and pregnant women. The impact of the fetus has a clear conclusion. According to reports, the United States, Japan, South Korea and other anti-electromagnetic wave clothing has been listed, and domestic research on the use of nano-materials to prepare anti-electromagnetic wave fibers is also underway.

3.8 other functional fiber piles

The different properties of nanoscale or ultrafine materials are used in individual functional fibers. Develop ultra-suspension fibers using high-specific gravity materials such as tungsten carbide, such as “XY-E” from Toray Industries, “July” from Asahi Kasei Corporation, and “Pyramidal” from Toyobo Co., Ltd.; and develop opaque fibers using the refractive properties of Ti02. Japan’s Unijica uses a sheath-core composite spinning method. The cortex and core layer contain different amounts of TiO2 to obtain a polyester fiber with good opacity. The fluorescent fiber is developed by using the luminosity of barium aluminate and calcium aluminate. Japan’s fundamental special chemical company has developed a light-storing material with barium aluminate and calcium aluminate as the main components, and the rest time can reach more than 10 h; some metal double salts, transition metal compounds undergo crystal transformation due to temperature changes. Or the color change of the ligand geometry or the crystallization of water “water”, the use of its reversible thermochromic characteristics to develop color-changing fibers; Mitsubishi Rayon Company uses the addition of colloidal calcium carbonate in the polyester to make hollow The fibers are treated with alkali reduction to form micropores on the fibers, and the fibers have good hygroscopic properties.

4. ???????

Nanomaterial science is a new discipline growth point that emerges from the intersection of atomic physics, condensed matter physics, colloid chemistry, solid chemistry, coordination chemistry, chemical reaction kinetics, surface and interface science. There are many unknown processes and novel phenomena involved in nanomaterials, which are difficult to explain with traditional physical chemistry theory. In a sense, the advancement of nanomaterials research will push many disciplines in the field of physics and chemistry to a new level. In recent years, by adding certain ultrafine or nano-scale inorganic material powders to the Taiwanese fiber-forming polymer, it has become a popular functional fiber manufacturing method, such as far-infrared fiber and anti-wear, by spinning to obtain fibers having a certain special function. Ultraviolet fibers, magnetic fibers, super-overhanging fibers, fluorescent fibers, color-changing fibers, antistatic fibers, conductive fibers, and highly hygroscopic fibers. With the continuous progress in the synthesis of nanomaterials and the improvement of basic theories, nanomaterials will develop more rapidly, and the application will cover many fields in the world.

???? ???????

?? ??? ??? ????? ????? ??????????. ?????? ????????? ???? ????? ?? *

一区二区三区日本在线播放-男人的天堂亚洲最新在线-各类女厕正面偷拍精品-91精品蜜臀国产自产| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 日韩亚洲分类视频在线-熟妇人妻久久中文字幕电-久久麻传媒亚洲av国产-精品丰满熟妇高潮一区| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 18 禁国产一区二区三区无遮掩-男女国产猛烈无遮挡视频-国产精品一区二区三区在线蜜桃-色悠悠国产精品免费观看| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 色偷偷东京热男人天堂-国产视频久久这里只有精品-美女视频中文字幕人妻-国产一区二区三区在线观| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 在线播放国产av蜜桃-国产精品自拍免费在线-亚洲国产成人综合青青-日韩成人高清在线视频| 久久亚洲av成人久久-国产性色av一区二区-国产三级韩国三级日产三级-国产一二三在线不卡视频| 国产熟女老阿姨毛片看爽爽-精品少妇人妻久久免费-韩国午夜福利片在线观看-西川结衣在线中文字幕| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 少妇高潮大片免费观看-九九热精品在线视频观看-中文字幕有码久久高清-免费国产一级一片内射中出| 综合一综合二综合久久-亚洲一区二区三区视频免费观看-亚洲国产中文字幕一区二区-日韩人妻一区二区三区蜜桃视频| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 欧美日本高清乱码一区二区-国产亚洲精品成人看片-性生交大片免费看淑女出一招-亚洲综合中文字幕综合| 特大毛片毛片免费视频-成人伊人青草久久综合网-91亚洲蜜桃内射后入在线观看-日韩情色电影中文字幕| 日韩有码中文字幕在线视频-草草影院国产在线观看-日韩中文字幕有码午夜美女-亚洲第二十页中文字幕| 日韩97精品一区二区三区-九九日本黄色精品视频-一进一出流出白浆视频-国产亚洲精品不卡视频| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 九九久久只有精品视频-精品女厕偷拍一区二区三区-欧美超乱碰精品综合在线-av中文字幕少妇人妻| 日本岛国三级黄色录像-日韩久久成人免费电影-中文字幕日韩专区一区二区-国产成人大片在线播放| 国产自拍成人激情视频-欧美大香蕉在线视频观看-精品人妻一区二区三区麻豆91-经典三级一区二区三区| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 国产精彩自拍视频在线-岛国视频免费在线播放-91久久精品国产综合另类专区-午夜福利欧美激情福利| 国产黄色带三级在线观看-国产精品色内内在线观看播放-一区二区三区视频在线观看-精品一区三区视频在线观看| 99精品国产在热久久婷婷人-黄色av一区二区在线-精品一区二区三区中文字幕在线-久久91国产人妻熟女| 日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 日韩精品极品系列在线免费视频-国产中文字幕有码视频-日韩一区二区免费电影-成人夜晚在线观看视频| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 国产在线观看不卡一区二区-国产女人在线观看视频射精91-91尤物在线视频观看-欧美无遮挡国产欧美另类| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 青青草视频在线观看免费网站-国产精品久久久久久亚洲影-在线播放国产精品一区二区-青青草免费观看高清视频| 成人福利一区二区视频在线-亚洲婷婷综合久久一本伊一区-日本高清午夜一区二区三区-日韩欧美黄色激情视频| 国产精品亚洲精品日韩精品-狠狠爱婷婷网五月天久久-国产精品激情成色在人-国产农村妇女精品三级一区二区| 自拍成人免费在线视频-91在线高清视频播放-国产美女口爆吞精系列-午夜福利黄片在线观看|