色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Since the first commercial scanning electron microscope came out in 1965, after 40 years of continuous improvement, the resolution of scanning electron microscopy has increased from 25 nm of the first one to 0.01 nm. Most scanning electron microscopy can be combined with X-ray spectrometer and X-ray energy spectrometer, which has become a comprehensive analysis of the surface micro-world. Multifunctional electron microscopy instrument. Scanning electron microscopy (SEM) has become a powerful tool widely used in various scientific fields and industrial sectors. Scanning electron microscopy (SEM) has been widely used in many fields, such as geology, biology, medicine, metallurgy, mechanical processing, materials, semiconductor manufacturing and ceramics inspection.

Scanning electron microscopy (SEM) plays an extremely important role in the field of materials. It is widely used in the study of morphology, interface condition, damage mechanism and material performance prediction of various materials. Scanning electron microscopy (SEM) can be used to study crystal defects and their production process directly. It can observe the aggregation mode of atoms in metal materials and their true boundaries. It can also observe the movement mode of boundaries under different conditions. It can also check the damage and radiation damage caused by crystal in surface machining.

Working Principle of Scanning Electron Microscope

Application of Scanning Electron Microscope in Material Analysis 2

The working principle of the scanning electron microscope is shown in

Fig. 1 Scanning electron microscope schematic diagram

The scanning electron microscope (SEM) is composed of electron beams emitted from an electron gun. Under the action of accelerated voltage, the electron beams converge through a magnetic lens system to form an electronic optical system with a diameter of 5 nm. After two or three electromagnetic lenses, the electron beams converge into a thin electron beam focusing on the surface of the sample. A scanning coil is mounted on the upper side of the final lens, under which the electron beam is scanned on the surface of the sample. Due to the interaction between high energy electron beams and sample materials, various kinds of information are generated: secondary electrons, back-reflection electrons, absorption electrons, X-ray, Auger electrons, cathodoluminescence and transmission electrons. These signals are received by the corresponding receiver, amplified and sent to the gate of the picture tube to modulate the brightness of the picture tube. Because the current on the scanning coil corresponds to the brightness of the picture tube, that is to say, when the electron beam strikes a point on the sample, a bright spot appears on the screen of the picture tube. In this way, scanning electron microscopy (SEM) uses point-by-point imaging method to convert the different features of the sample surface into video signals proportionally in order to complete a frame of images, so that we can observe various characteristic images of the sample surface on the fluorescent screen.

Annex of Scanning Electron Microscope

Scanning electron microscopy (SEM) is usually equipped with a spectrometer or an energy spectrometer. The spectrometer uses Bragg equation 2dsin (= () to excite X-rays from the sample and to separate them by appropriate crystals. The characteristic X-rays with different wavelengths will have different diffraction angles of 2 ().  Spectrometer is a powerful tool for micro-area component analysis. The wavelength resolution of the spectrometer is very high, but its application range is limited because of the low utilization of X-ray. Energy spectrometer is a method of element analysis based on the energy difference of X-ray quantum. For an element, when the X-ray quantum transits from the main quantum number stomach N1 to the main quantum number n2, there is a specific energy (=(n1-(n2). Energy dispersive spectrometer has high resolution and fast analysis speed, but its resolution ability is poor. There are often overlapping lines, and the accuracy of element analysis for low content is very poor.

Spectrometers and energy spectrometers can not replace each other, but complement each other.

Application of Scanning Electron Microscope in Material Science

Observation of Surface Morphology of Materials

Application of Scanning Electron Microscope in Material Analysis 3

FIGURE 1 SEM MORPHOLOGY OF HOT ROLLED Mg SIDE PEELLING SURFACE

The SEM morphology of Mg side peeling surface of hot rolled Al-Mg clad sheet (rolling temperature 400 C, reduction rate 45%) is shown in Figure 1. From the graph, we can clearly see that there are a lot of tearing edges and platforms on the peeling surface, and there are many small radial stripes and dimples on the tearing platform.

Second Phase of Observing Material

Application of Scanning Electron Microscope in Material Analysis 4

Figure 2 High-power Microstructure of AZ31 Magnesium Alloy by SEM

It can be clearly seen from Fig. 2 that the size of the second phase Mg17Al12 after fragmentation is about 4 m, and there are many dispersed small particles near the “bulk” Mg17Al12 with the size of about 0.5 m. This is the second phase Mg17Al12 precipitated from the supersaturated solid solution of a-Mg base during the cooling process after hot rolling, showing the fineness of this morphological distribution. Biphasic Mg17Al12 can effectively inhibit dislocation movement, improve material strength and play the role of dispersion strengthening, but will not significantly reduce the plasticity of AZ31 magnesium alloy.

Observation of Material Interface

Application of Scanning Electron Microscope in Material Analysis 5

Figure 3 Mg/Al rolling interface line scanning [1]

Fig. 3 is a line scan image of Mg/Al rolling composite interface. From the graph, we can see that the line scan through the interface between Mg and Al can be obtained. On the Al side, the Mg content is low, and on the Mg side, Al is almost zero. However, at the interface, about half of Mg and Al occur, indicating that the diffusion occurs at the interface, forming Mg and Al. Diffusion layer.

Observation of material fracture

????? ???? ????? ?????????? ?? ????? ?????? 6

(a) As-cast  

Application of Scanning Electron Microscope in Material Analysis 7

 (b) Hot-rolled

Figure 4 Tensile Fracture Morphology of AZ31 Magnesium Alloy

The SEM scanning morphology of tensile fracture of as-cast AZ31 magnesium alloy is shown in Fig. 3-6. From Fig. 4 (a), it can be seen that there are obvious cleavage fracture platforms and a few dimples at the final tear point, which are basically quasi-cleavage fracture with poor plasticity. This is because there is a large brittle second phase Mg17Al12 at the grain boundary of as-cast AZ31 magnesium alloy, which is easy to crack and form crack source during tensile deformation. The fracture morphology of hot rolled AZ31 magnesium alloy shows obvious necking phenomenon. As shown in Figure 4 (b), the macro fracture morphology of AZ31 magnesium alloy shows ductile fracture morphology with dimple size ranging from 5 to 20 m.

Concluding remarks

Scanning electron microscopy (SEM) is widely used in material science. It can be used not only in the above aspects of material science, but also in fatigue failure of metals and morphological observation of impurities. As a student majoring in materials, we should understand the working principle and application of scanning electron microscopy, and make full use of the tool of scanning electron microscopy in our scientific research to conduct a comprehensive and meticulous study of materials.

日韩熟女av在线观看-中文字幕人妻丝祙乱一区三区-亚洲国产精品第一区二区三区-欧美制服丝袜一区二区三区| 国产韩国精品一区二区三区-久久精品人妻一区二区三区av-黄片视频在线观看欧美-国产成人自拍在线视频| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 国产四虎视频在线观看-日本一区二区三区暖暖视频免费-91人妻人人澡人人添人人爽-在线日本高清日本免费| 国产老熟女精品一区二区三区-精品国精品自拍自在线-亚洲国内自拍愉拍少妇-欧美日韩一级片免费播放| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍| 激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 91精品国产福利在线观看-av在线免费观看播放-日本岛国免费在线观看-国产高清视频一区二区三区四区| 久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 国产熟女av中文字幕-国产星空传媒视频在线观看-久久精品在线精品视频-亚洲国产av卡一卡二| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 亚州国产精品一区二区-尤物在线观看视频免费-国产91久久精品视频-一色桃子中出欲求不满人妻| 人妻少妇一区二区三区精品-三级尤物视频在线观看-野花在线中文字幕伊人-亚洲精品一区二区播放| 人妻少妇av免费久久蜜臀-欧美国产日韩在线一区二区-美女被啪啪到深处好爽无套-日韩av一区在线资源播放| 午夜男女靠比视频免费-欧美激情影院狂野欧美-国语淫秽一区二区三区四区-国产成人av区一区二区三泡芙| 欧美高清视频在线高清观看-四虎最新在线播放视频-亚洲中文字幕永久在线全国-亚洲国产av成人精品成人| 口爆调教视频在线播放-一区二区三区中文字幕自拍偷拍-亚洲精品乱码免费精品乱码免费-国产精品日韩欧美高清情| av网站在线观看华人免费-美女露下体让人舔视频网站-六月丁香激情综合爱爱-宅福利有番号亚洲麻豆91| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 成年深夜在线观看视频-成人国产av精品在线-av乱亚洲一区二区三区-亚洲精品综合一区二区在线| 极品尤物视频在线观看-亚洲成人av在线蜜桃-美国一级黄色免费网站-免费观看四虎国产精品| 翔田千里的五十路六十路-精品国产综合一区二区三区-久久婷婷色中文字幕免费高清-国产精品伦理视频一区二区| 亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 五月婷婷丁香综合入口-日本少妇免费中文字幕-96青草视频在线观看-中文字幕成人精品久久不卡| 成熟女人毛茸茸的免费视频-91麻豆精品国产自产在线游戏-国产男女猛烈无遮挡免费视频-一级黄片国产精品久久| 亚洲少妇插进去综合网-久草免费在线人妻视频-丰满人妻熟妇乱精品视频-日韩极品精品视频免费在线观看| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 久久女婷五月综合色啪色老板-国内不卡的一区二区三区中文字幕-在线观看一区二区三区日韩-五月天丁香婷婷狠狠狠| 国产精彩自拍视频在线-岛国视频免费在线播放-91久久精品国产综合另类专区-午夜福利欧美激情福利| 国内自拍偷拍视频91-日本成人熟女一区二区三区-国产l精品国产亚洲区久久-久久精品成人中文字幕| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码| 亚洲国产黄色美女视频-成人家庭影院日韩午夜-国产剧情av网址网站-91精品乱码一区二区三区| 亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 国产一级r片内射视频播放-中文字幕最新精品资源-久久青青草原精品国产麻豆综合-深夜成人在线免费视频| 国产亚洲精品首页在线播放-中文字幕国产av中文字幕-日本免费午夜福利视频-亚洲伦理一区二区三区四区| 欧美日本国产一区二区三区-亚洲精品成人午夜在线观看-国产精品一二三在线看-国产成人传媒在线播放| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 男女啪啪动态视频免费-日韩精品一区二区高清-日韩在线有码中文字幕-日本免费高清一区二区三区视频| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎|