色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Development history of shape memory alloy

Shape memory alloy is a kind of shape memory material with excellent properties. When it is affected by external force or magnetic change, it can keep its previous state, which is called shape memory effect. The application of these materials is very simple, in which the materials are easy to deform by applying external force. When they are heated to a certain temperature by external or internal heating, they will shrink or return to their original shape. In 1932, Swedish physicists first discovered this shape memory effect in Au CD alloy. By 1938, greninger and mooradian first observed this shape memory effect in Cu Zn and Cu Sn alloys. Until 1969, SMA was successfully applied commercially for the first time. Raychem company successfully applied NiTi alloy as a pipe joint to the oil pressure system of F14 fighter in the United States, and achieved good sealing performance of the oil pressure system.

A Detailed Introduction to Shape Memory Metal 2

Shape memory effect

The shape memory effect of shape memory alloy is essentially related to the martensitic transformation in the alloy. The shape memory alloy exists in the form of austenite at higher temperature and martensite at lower temperature. When SMA is heated, it begins to change from martensitic phase to austenitic phase. A s is

It is defined as the temperature at which austenitic transformation begins, and AF as the temperature at which austenitic transformation ends. When SMA is heated above a s temperature, the martensitic phase will gradually change back to the austenite phase and return to the original shape at high temperature, which can also be carried out under high load conditions. In the cooling process, the starting temperature from austenite to martensite is defined as MS, and the temperature at the end of martensite transformation is defined as MF. The temperature at which martensitic transformation is no longer induced by stress is defined as MD. Above this temperature, SMA deforms under the action of external force, and immediately returns to its original shape after unloading. Shape memory alloys have three different types of memory effects (as shown in Figure 1), which are characterized as follows:

① One way memory effect. When the temperature is reduced, the alloy will deform, and then it will return to the state before deformation by increasing the temperature, that is, there is shape memory effect in the heating process;

② Two way memory effect. When the alloy returns to the state at high temperature during heating, and returns to the shape at low temperature when the temperature is reduced. Because the two-way memory effect can only be obtained through proper “training” process and the strain at high temperature will be greatly reduced, so it has less commercial application. Heat force cycling is a kind of “training” method to realize the two-way shape memory effect. It achieves the purpose of “training” by cycling between austenite and specific martensite variants;

③ Whole process memory effect. It refers to the state when the alloy recovers to high temperature during the heating process. When the temperature is reduced to low temperature, the shape changes to the opposite shape when it changes to high temperature.

A Detailed Introduction to Shape Memory Metal 3

The shape memory effect is a non diffusion solid phase martensitic transformation. In addition, there are other phase transformation processes related to shape memory, such as R-phase transformation, which generally occurs in an intermediate phase transformation from austenite to martensite. There is thermal hysteresis in the reverse transformation of martensite, which is an index to measure the temperature difference between heating and cooling (i.e. Δ t = af-ms). This thermal hysteresis property is very important, and the thermal hysteresis of SMA material needs to be considered carefully in the process of target technology application, for example, for fast drive application, smaller thermal hysteresis is needed, while for pipeline connection, larger thermal hysteresis is needed to ensure that the predefined shape is maintained in a larger temperature range. The physical and mechanical properties (thermal conductivity, thermal expansion coefficient, resistivity, Young’s modulus, etc.) of some SMA before and after phase transition are also different. Austenite phase structure is relatively hard and has higher Young’s modulus, while martensite structure is softer and more malleable, that is, it can be easily deformed by applying external force.

A Detailed Introduction to Shape Memory Metal 4

Introduction of shape memory alloy materials

NiTi shape memory alloy has been widely used in biomedical fields such as alloy stent, minimally invasive medical devices, orthopedic surgery, brain surgery and stomatology due to its excellent biocompatibility and mechanical properties.

A Detailed Introduction to Shape Memory Metal 5

However, due to the obvious limitations or shortcomings of SMA, such as high manufacturing cost, limited recoverable deformation and service temperature, other types of shape memory materials are being explored.

High temperature shape memory alloy

Due to the higher and higher requirements for the service temperature of high temperature shape memory alloy, many researchers have increased the service temperature of shape memory alloy by adding the third element alloy in NiTi alloy. In fact, the high temperature shape memory alloy is defined as the shape memory alloy that can be used above 100 ℃, but due to the large

Most high temperature shape memory alloys show poor ductility and fatigue resistance at room temperature, so it is difficult to process and “train”, so the cost of manufacturing them is very expensive. Ferromagnetic shape memory alloy

Compared with the traditional temperature controlled shape memory alloy, the ferromagnetic shape memory alloy has larger output strain and higher response frequency. This is because the energy propagates through the magnetic field during the service process and is not affected by the thermal conductivity and heat dissipation conditions of the alloy material. Its shape memory effect is to excite twins through the external magnetic field

The preferred reorientation among the martensitic variants results in the macro shape deformation of the alloy. Ferromagnetic shape memory alloy can not only provide the same specific power as traditional memory alloy, but also transmit at a higher frequency. However, in general, ferromagnetic shape memory alloy will encounter similar design problems with traditional memory alloy in the application process. In addition, the hardness of ferromagnetic shape memory alloy is very large and brittle, so it can only be processed and operated at low temperature. Therefore, it is difficult to shape and shape ferromagnetic shape memory alloy, and it is not suitable for high temperature and high strength environment at present. Therefore, it is still necessary to further study the existing ferromagnetic shape memory alloy in order to further improve the performance of the material.

ferromagnetic shape memory alloy

Compared with the traditional temperature controlled shape memory alloy, the ferromagnetic shape memory alloy has larger output strain and higher response frequency. This is because the energy propagates through the magnetic field during the service process and is not affected by the thermal conductivity and heat dissipation conditions of the alloy material. Its shape memory effect is to stimulate the preferred reorientation between twin martensite variants through the external magnetic field The macro shape deformation of the alloy occurs. Ferromagnetic shape memory alloy can not only provide the same specific power as traditional memory alloy, but also transmit at a higher frequency. However, in general, ferromagnetic shape memory alloy will encounter similar design problems with traditional memory alloy in the application process. In addition, the hardness of ferromagnetic shape memory alloy is very large and brittle, so it can only be processed and operated at low temperature. Therefore, it is difficult to shape and shape ferromagnetic shape memory alloy, and it is not suitable for high temperature and high strength environment at present. Therefore, it is still necessary to further study the existing ferromagnetic shape memory alloy in order to further improve the performance of the material.

Shape memory film material

Due to the application of shape memory alloy materials in mechanical systems, especially in micro actuators, shape memory alloy films have been widely studied. Shape memory thin film materials are generally used as independent thin films to become micro actuators. In the rapid development of MEMS, NiTi thin film has become the first choice on the micro level

The actuator, due to its excellent shape memory performance and high frequency, can still maintain a large output power. It is expected that the micro NiTi drivers based on sputtered NiTi films will occupy a large part of the commercial market, especially for medical micro devices and implantable applications. However, the application of shape memory thin film materials in some fields with ambient temperature higher than 100 ℃ is limited, such as automobile engine, fire alarm and aviation turbine, so in recent years, the research on high temperature shape memory thin film materials with phase change temperature higher than 100 ℃ has been increased.

Development trend of shape memory alloy

(1) To develop new or improve the existing shape memory materials, for example, to add appropriate third alloying elements into the shape memory alloy system, improve its martensitic transformation, and achieve fine control of its transformation process at the micro level.

(2) Shape memory alloy with excellent functional properties can be compounded with other materials with good structural properties to meet the requirements of special field applications.

(3) In order to meet the demand of commercial application, we should increase its commercial application and improve the preparation method for large-scale production.

少妇人妻上班偷人露脸-欧美中文字幕乱码视频-欧美韩日本一本交道免费-国产一区,二区,三区免费视频| 久久综合九色综合久久-在线看日韩欧美中文字幕-国产成人亚洲精品青草天美-91亚洲中文天堂在线观看| 免费观看一区二区av蜜桃-免费一级特黄久久大片-每日更新日韩中文字幕有码-97视频在线观看午夜| 亚洲av色福利天堂在线观看-人妻少妇午夜福利视频-男人的天堂av在线视频-国内揄拍国产精品人妻一区二区| 国产av蜜臀一区二区三区野战-欧美精品久久精品推荐-亚洲有吗黄色日韩视频-中文字幕在线乱码人妻| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 五月婷婷六月色激情综合-国语对白在线免费视频-亚洲熟女熟妇乱色一区-深夜福利免费在线播放| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 91高清在线观看播放-av在线免费观看男人天堂-九九热在线视频免费观看-美女脱内裤露出隐私部位| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 97资源视频在线观看-青草视频在线免费播放-最新日韩中文字幕在线播放-成人国产av精品麻豆网站| 日韩精品极品系列在线免费视频-国产中文字幕有码视频-日韩一区二区免费电影-成人夜晚在线观看视频| 国产亚洲一区二区三区综合片-亚洲天堂日韩精品在线-有码视频在线观看日本专区-亚洲精品成人福利在线| 日韩欧美亚洲国产首页-色婷婷色久悠悠综合在线-亚色综合久久国产精品-日本岛国免费在线播放| 国产一区二区中文字幕在线观看-人妻少妇被粗大爽视频-开心五月婷婷综合网站-国产精品久久国产精麻豆| 日韩av手机在线观看免费-91精品人妻一区二区三区精-最近在线视频免费播放-国产亚洲欧洲在线观看| 换脸av一区二区三区-少妇精品亚洲一区二区成人-亚洲熟女综合一区二区三区-国产91久久精品成人看| 久久精品熟女亚洲av麻豆-国产精品久久99粉嫩-校园春色另类综合在线视频-久久亚洲精品国产日韩| 在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 亚洲av无一区二区三区久久-色琪琪久久综合网天天-国产一区二区视频在线播放-大象焦伊人久久综合网| 欧美日韩在线无卡免费播v-91麻精品国产91久久久久-中文字幕亚洲综合久久菠萝蜜-久久青青草原资源福利| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 对天堂网在线观看av-一本色道久久亚洲狠狠躁-少妇被粗大的猛进视频-日韩熟女一区二区精品视频| 日韩精品成人一区二区三区-亚洲综合中文字幕第一页-久久伊人亚洲中文字幕-花季传媒视频无限制观看| 激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 一区二区三区四区五区黄色-色哟哟精品免费专区在线-很色精品99在线观看-亚洲一区二区三区精品久久| 中文字幕av东京热久久-国产精品日韩精品最新-亚洲激情av免费观看久久-亚洲第一精品国产网站| 国产最新av一区二区-国产精品自产av一区二区三区-国产精品国产三级国产有无不卡-成人偷拍自拍在线观看| 最近日本中文字幕免费完整-欧美男女性生活真人视频-激情综合网激情综合网激情综合-中文字幕日韩有码国产精品| 成熟女人毛茸茸的免费视频-91麻豆精品国产自产在线游戏-国产男女猛烈无遮挡免费视频-一级黄片国产精品久久| 日韩bd高清电影一区二区-久久亚洲国产精品久久-亚洲精品国产精品av-大胸少妇av网站在线播放| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 中出 中文字幕 久久-成人午夜大片免费在线观看-免费观看黄欧美视频网站-午夜福利观看在线观看| 国产精品高潮呻吟久久av嫩-青青草免费公开在线观看视频-亚洲欧美日韩另类综合视频-国产三级在线观看精品| 亚洲乱码中文字幕综合-欧美日韩亚洲综合久久精品-美女隐私无遮挡免费网站-国产精品激情av在线播放| 免费十八禁一区二区三区-国产精品一区二区三区99-在线一区二区三区男男视频观看-精品欧美一区二区三区人妖| 亚洲精品一区中文字幕在线-开心五月综合五月综合-日韩av在线播放中文-国产臀交视频在线观看| 中文字幕日韩有码av-麻豆国产成人av高清在线-可以免费观看的av毛片-久久这里只有精品国产亚洲| 亚洲永久精品在线观看-成人av在线观看免费-蜜臀av免费一区二区三区-成人av在线久色播放|