色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

To achieve the sustainable development of tungsten resources in the carbide?tool industry, it is essential to develop high-grade carbide?tools that enhance tool performance, improve material utilization, recycle old tool materials, and continuously research new carbide?tool materials, while also promoting the use of other tool materials.

Carbide Tools' Sustainable Development of Tungsten Resources 2

Development of High-Grade Carbide?Tools

China has become the world’s manufacturing center and the largest market for cutting tools. During the 11th Five-Year Plan, domestic tools accounted for over 65% of the market share, but these products primarily fall in the mid to low-end categories, necessitating significant imports of high-grade tools. In 2010, China’s tool consumption was about 33 billion yuan, with approximately 11 billion yuan spent on imported high-grade tools, while domestically developed high-grade tools accounted for only about 1 billion yuan in sales. This situation results in a significant consumption of tungsten resources with low added value.

Developing high-grade carbide?tools is crucial for reducing tungsten resource consumption and promoting sustainable development. For example, indexable CNC blades not only inherit the features of high-end solid carbide?tools but also showcase integration in design and manufacturing, excellent chip-breaking designs, and diverse coating options. Compared to solid carbides, indexable blades significantly increase material utilization; for instance, Seco’s DOUBLE OCTOMILL? has 16 cutting edges, while Iscar’s H400 olive-shaped blade can be used over 10 times.

Improving the Utilization of Carbide?Tool Materials

Cutting tools often show minimal wear when they reach normal wear standards; directly classifying these tools as waste leads to significant tungsten resource wastage. Advanced regrinding and recoating technologies can remanufacture such tools, allowing them to maintain cutting performance multiple times and thus improving the utilization of carbide?tool materials.

Regrinding of carbide?tools involves classifying regrindable tools based on the extent of edge damage, determining suitable regrinding plans, and completing the process through rough grinding, fine grinding, and edge reinforcement. After rough and fine grinding, the cutting edge may have defects like micro-chipping and micro-cracking. Appropriate edge reinforcement methods can eliminate these defects, increasing edge strength and tool lifespan. Regrinded tools can also be coated again as needed.

Due to the standardized and modular nature of indexable blades, the regrinding process can also be standardized. Table 1 outlines the main regrinding processes and characteristics for indexable blades. After proper regrinding and recoating, the cutting performance of carbide?tools during rough machining is about 50% to 80% of new tools, while during finishing, it is about 85% to 90%. Through advanced regrinding and recoating technologies, carbide?tools can repeatedly demonstrate their cutting performance, thus enhancing material utilization and reducing tungsten resource consumption.

Table 1: Main Regrinding Processes and Characteristics of Indexable Inserts

Regrinding Process Name

Regrinded Blade Type

Principle

Advantages Disadvantages
Local Regrinding Same Model Blades Observe worn areas of old blades for local regrinding Simple method, low cost Cannot completely eliminate original damage and wear marks
Small Specification Regrinding Similar Small Specification Blades Regrind old blades partially or completely, reduce size, convert to similar small specification blades Remains standard size after regrinding, can be installed on standard tool holders, effectively eliminates original wear and damage marks Large amount of regrinding required
Modified Regrinding Modified Blades Regrind blades partially or completely, change the shape and size for other purposes Relatively simple process, low cost Cannot completely eliminate original damage and wear, lower lifespan
Fixed Position Regrinding Grind specific areas of old blades into one or more shapes to improve cutting edges Fixed positioning, high interchangeability, provides specific shapes and sharp cutting edges Proprietary design

Recycling and Utilization of Carbide?Tool Materials

Tungsten resources in tungsten ore are primary, non-renewable resources, while tungsten resources in carbide?tool materials are secondary, renewable resources. As the supply of tungsten resources becomes increasingly tight, awareness of recycling tungsten resources from old carbide?tools is growing. Currently, the main methods for recycling tungsten resources from carbide?tool materials include melting, mechanical crushing, and electrolytic methods, with melting methods encompassing both niter and zinc melting methods. Zinc melting and electrolytic methods are currently the most widely used. Table 2 outlines the main methods and characteristics for recycling tungsten resources in carbide?materials. Additionally, other methods for recycling tungsten resources in carbides include high-temperature treatment and acid leaching.

Table 2: Main Methods and Characteristics of Tungsten Resource Recovery in Hard Alloy Materials

Method Name Recovery Principle Advantages Disadvantages
Niter Method Melt waste materials and niter at 900–1200°C, then immerse in water; tungsten enters solution as Na?WO?, then WO? or APT is produced from the solution; cobalt remains in the residue for recovery Early application, wide adaptability, low investment, fast reaction Long process, low recovery rate, high cost, environmental pollution
Zinc Melting Method At high temperatures, zinc forms a zinc-cobalt alloy with cobalt in carbides, causing the phase to expand; zinc is removed by vacuum distillation, resulting in a porous body, which is then crushed and milled to obtain tungsten-cobalt mixed powder Widely used, relatively mature, short process, tungsten recovery rate reaches 95% Product performance is low, high production costs and energy consumption
Mechanical Crushing Method Clean the surface of carbide?waste, then mechanically crush and mill to obtain a carbide?mixture Short process, low cost, high efficiency, low energy consumption Requires special equipment and technology
Electrolytic Method Use waste carbide?as the anode; by controlling the anode potential, cobalt is selectively dissolved into the electrolyte, then treated chemically to produce cobalt oxide; tungsten carbide is produced as anode sludge, which can be deoxidized to obtain tungsten carbide powder Simple process, low cost, high efficiency, low labor intensity, minimal pollution Generally suitable for waste with cobalt content greater than 8%

 

Foreign tool companies have long conducted research and application work on the recycling of worn carbide?tool materials. Sandvik Tooling has launched a recycling initiative aimed at recovering and reusing worn carbide?blades and solid carbide?tools. Reports indicate that approximately one-third of Sandvik’s carbide?products come from recycled materials each year. Similarly, Hitachi Tools in Japan is actively promoting the recycling of worn carbide?materials nationwide.

As a major consumer of carbide?tools, China has the potential to create favorable conditions for the recycling of tungsten resources. While many domestic companies, such as Heyuan Fuma carbide?Co., Ltd. and Xiamen Jinlu Special Alloy Co., Ltd., have begun recycling carbide?tool materials, overall awareness of tungsten resource recycling remains low, with a relatively low recycling rate and the quality of recycled tungsten resources needing further improvement.

carbide tool

Research and Development of New Carbide?Tool Materials

With the continuous emergence of new processing materials and technologies, new tool materials are also being developed. The research of carbide?tool materials with lower tungsten content plays a positive role in the conservation and sustainable development of tungsten resources. Currently, steel-bonded carbide?materials and functionally graded carbide?materials are two major research hotspots.

Steel-bonded carbide?is a new type of carbide?material developed in recent years. It consists of one or more carbides (such as TiC, WC) as the hard phase (about 30% to 50% content) and high-speed steel or alloy steel as the bonding phase, made through powder metallurgy. Steel-bonded carbides inherit the advantages of both carbides and steel, offering high hardness and wear resistance while also providing high strength, ductility, and weldability typical of steel. This material fills the gap between the two. Steel-bonded carbides can be used to manufacture complex tools like drill bits, milling cutters, pull tools, and hob cutters, showing significant effects in machining stainless steel, heat-resistant steel, and non-ferrous alloys.

Functionally graded carbide?materials are also a hot research topic globally and represent the future direction of modern carbides. These materials exhibit a systematic and uneven distribution of chemical composition across different sections, utilizing compositional gradients to endow different parts of the material with varying properties. This helps to resolve the inherent conflict between hardness and toughness in carbides, resulting in superior comprehensive performance.

The application of steel-bonded carbide?materials and functionally graded carbide?materials in tool fields has achieved remarkable results. For instance, the “Christmas tree” milling cutter used for machining turbine rotor grooves is made of steel-bonded carbide. Sandvik’s functionally graded carbide?materials have been widely used in products such as coating blades and mining alloys, which operate under very harsh conditions. Although China has researched steel-bonded carbide?and functionally graded carbide?materials for over a decade, breakthroughs in core technologies and equipment are still needed, making this a focus for future research.

Promotion of Other Tool Materials

Despite the strong versatility and broad applicability of carbide?tools, no universal tool exists; each type of tool material has its limitations. Promoting the use of other tool materials in their respective fields can reduce dependence on and excessive use of carbide?tools, contributing positively to the sustainable development of tungsten resources in the carbide?tool industry.

In addition to carbide?materials, other tool materials include high-speed steel, ceramic tools, and superhard materials. High-speed steel, especially high-performance powder metallurgy high-speed steel, remains important in complex forming tools; ceramic tools excel in machining cast iron and hardened steel; diamond PCD tools show clear advantages in processing non-ferrous metals and non-metallic materials; PCBN tools are primarily used for machining steel and cast iron materials.

Foreign tool application companies are far ahead of China in the use of other tool materials. For example, GE in the U.S. has achieved milling speeds of 4000 m/min when using PCD face mills on aluminum engine cylinder heads.? In recent years, the development of foreign ceramic tools has been particularly rapid; Sandvik has achieved significant success with whisker and alumina ceramic tools in high-feed turning and milling of high-temperature alloys.

Conclusion

China’s tungsten resource supply is becoming increasingly scarce. To reduce tungsten resource consumption and ensure sustainable development in the carbide?tool industry, it is essential to actively develop high-grade carbide?tools, enhance tool performance, improve material utilization rates, recycle worn carbide?tool materials, and continuously research new carbide?tool materials. Additionally, there should be strong promotion of the use of other tool materials in relevant application fields.

Leave a Reply

Your email address will not be published. Required fields are marked *

日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 成人久久一区二区三区精品-日本伦理在线一区二区三区-全亚洲最大黄色在线网站-国产免费午夜福利片在线| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 国产精品精品久久99-久久羞羞色院精品全部免费-日韩中文粉嫩一区二区三区-外国黄色三级视频网站| 天天躁夜夜躁狠狠85麻豆-操美女逼视频免费软件-国产精品一区二区在线观看-一区二区三区免费观看视频在线| 97人看碰人免费公开视频-亚洲熟女热女一区二区三区-91精品国产综合久久蜜桃内射-蜜桃视频在线观看免费网址一区| 尤物视频在线观看精品-日韩午夜男女爽爽影院-日本少妇下面好紧水多影片-国产亚洲精品视频在线网| 亚洲高清日本一区二区三区-日韩极品精品一区二区三区-亚洲成人av在线一区二区-亚洲精品国产精品粉嫩| 亚洲a级一区二区三区-人妻中文字幕精品在线-日韩精品中文字幕人妻系列-香蕉久久最新精品视频| 亚洲一区二区三区四区中文字幕-精品久久久久久蜜臀-国产传媒视频免费观看网站-国产三级在线观看一区二区| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 亚洲无吗视频在线观看-成人免费在线视频平台-国产午夜视频看看果冻-国产黄色片国产黄色片| 日本一区二区三区四区在线-黄色激情免费看国产看片-微拍福利一区二区视频-日本高清免费不卡观看| 久久热大香蕉在线视频-nana在线观看高清视频 视频-久久最新视频在线观看-日韩高清不卡视频在线观看| 天堂网日韩一区二区三区四区-自拍视频在线观看地址-91麻豆视频免费入口-国产理论片一区二区三区| 天堂av免费资源在线观看-青春草在线视频播放免费观看网站-亚洲精品中文字幕久久桃色-亚洲成人有码免费在线| 蜜臀av午夜在线观看-亚洲欧美日韩成人综合在线-国产黄色一级性生活片-亚洲av高清一区二区三区麻豆| 综合久久少妇中文字幕-亚洲中文波霸中文字幕-免费在线看的av网站-久久狠狠爱亚洲综合影院| 国内外成人综合免费视频-久久国产精品99久久蜜臀-大三美女口爆吞精视频-亚洲国产一区二区精品性色| 久久精见国产亚洲av高清热-国产一区国产二区亚洲精品-99久久精品视频一区二区-91精品亚洲欧美午夜福利| 邻居少妇毛多水多太爽了-男人天堂手机在线视频-国产精品国产三级国产专播-韩国女主播福利视频一区二区| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕| 99精品一区二区成人精品-激情自拍视频在线观看-久久热这里只有精品视频-伊人色综合九久久天天蜜桃| 玩弄漂亮少妇高潮大叫-国产熟女露脸av自拍-国产自拍免费精品视频-日韩精品素人妻在线看| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 中文字幕av东京热久久-国产精品日韩精品最新-亚洲激情av免费观看久久-亚洲第一精品国产网站| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 欧美日韩在线无卡免费播v-91麻精品国产91久久久久-中文字幕亚洲综合久久菠萝蜜-久久青青草原资源福利| 国产大奶子在线播放免费-中文字幕在线观看精品亚洲-日韩欧美精品一区二区三-国产手机av免费在线观看| 精品人妻中文字幕有码在线-亚洲欧美一区二区成人精品久久久-亚洲第一人伊狼人久久-亚洲国产欧美精品在线观看| 欧美亚洲国产另类在线-九九热精品在线免费视频-日本高清有码在线一区-青草第一视频在线观看| 日韩一卡二卡在线播放-亚洲国产精品懂色av-青青热久免费精品视频在-久久精品中文字幕一区二区三区| 国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久| 水蜜桃精品视频在线观看-日本国产一区二区在线观看-69久久夜色国产精品69-免费观看亚洲成人av| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 国产色悠悠综合在线观看-亚洲av综合av一区-久久久久国产精品三级网-欧美日韩精品一区二区不卡| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| 人妻中文字幕一区二区三区-国产精品丝袜久久亚洲不卡-久久伊人精品色婷婷国产-日韩中精品文字幕在线一区| 美女脱掉内裤露屁屁最新章节-成人中文字幕在线观看的-国产极品尤物粉嫩在线观看-在线视频一区二区中文字幕|