色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Nano-WC-Co carbides, known for their high strength and hardness, represent a promising direction for the development of carbides. Currently, the biggest challenge hindering the advancement of nano-crystalline WC-Co carbides is the difficulty in preparing nano-WC powder.

Typically, nano-WC powders are prepared using gas-phase reaction methods or high-energy ball milling techniques. The most widely used method for preparing WC-Co composite powders is through hydrogen reduction/carbonization of tungsten oxide. Therefore, controlling the microstructure and preparation process of tungsten oxide can yield nano-tungsten powder. However, there is currently a lack of in-depth research on how different carbonization methods affect the carbonization process of nano-tungsten powder. Research in this area holds significant practical value for the production of nano-tungsten carbide powders and the fabrication of nano-crystalline WC-Co carbides.

This study uses ball-milled tungsten oxide as the raw material and prepares nano-tungsten powder by controlling the hydrogen reduction process. Different carbonization methods, namely wet ball milling and dry milling, are employed to mix carbon, resulting in W+C mixed powders with varying morphologies. After carbonization, WC powder is obtained, aiming to enhance the uniformity of the dispersion of tungsten and carbon black particles through suitable carbonization methods and to explore a cost-effective industrial method for preparing homogeneous nano-WC powder.

How is the Properties of Nano-WC Powder Influenced by Carbonization Method? 2

The Importance of Carbon Content in Carbide?Powders

Carbon content is a crucial factor influencing the performance of carbides. Even minor fluctuations in carbon content can lead to changes in the alloy’s phase composition and microstructure, thus affecting its performance. When the carbon content in an alloy is insufficient, decarburized phases, which are brittle and unstable, may form, resulting in reduced strength and increased susceptibility to fracture and chipping during use. Conversely, when carbon content is too high, free graphite may form within the alloy, disrupting the continuity of the matrix and adversely affecting properties such as bending strength, toughness, and wear resistance.

Even fluctuations in carbon content within the normal phase range can significantly impact alloy performance. At the upper limit, strength and toughness are high while hardness and coercivity are low; at the lower limit, the opposite is true. This is because changes in carbon content, while not altering the number of phases, do modify the composition of the bonding phase. The hardness of the bonding phase is determined by tungsten content, which can be controlled by the total carbon in the raw materials during the sintering process. Thus, the overall carbon content of the alloy is vital for the material’s hardness and toughness. Studies of high-lifetime micro-drills and stamping dies have shown that the saturation magnetization of long-lasting alloys is typically controlled within 75% to 80%, indicating that their carbon content is maintained at the lower limit of the normal phase range.

 

Experimental Method

To further improve the uniformity of the powder and reduce particle agglomeration, mechanical milling and classification were used to preprocess WO. The preprocessed powder (MWO?) was then subjected to hydrogen reduction in a tubular furnace at 760°C to obtain nano-W powder. Following this, an appropriate dispersant was added for wet mechanical alloying and carbon mixing. After vacuum drying, the mixture was carbonized in a hydrogen molybdenum wire furnace at 1140°C, followed by crushing to obtain nano-WC powder. Additionally, dry milling was also employed for carbon mixing under the same carbonization conditions for comparative analysis. Scanning electron microscopy (SEM) was used to observe the morphology of WO?, W, and WC powders, while powder properties such as particle size, specific surface area, and total carbon content were measured. Specific surface area and particle size of the nano-W powder were measured using a SA3100 specific surface area analyzer and a particle size analyzer, and the morphology and uniformity of the powder were examined with a QUANTA-200 SEM.

 

Results and Discussion of the Experiment

Morphology and Properties of Nano-WC Powder

Figure 1 shows SEM images of the raw powder and nano-W powder. The results indicate that mechanical milling significantly refines the WO? powder, achieving a particle size of 1.1 μm and a specific surface area of 4.52 m2/g. After mechanical nano-sizing, the morphology of the WO? powder changed significantly, with smooth surfaces and a dense structure consisting of nano-particles. The large agglomerated WO? particles were crushed into finer particles with maximum agglomerates not exceeding 20 μm. Using MWO as a raw material under specific processing conditions, nano-sized W powder (20-30 nm) was produced, exhibiting inherited structural characteristics from its oxide precursor and showing varying degrees of loose agglomeration, with maximum agglomerate sizes not exceeding 20 μm.

Nano-WC

Morphology of W+C Mixture after Carbon Mixing

Figure 2 presents SEM images of the W+C mixtures obtained through different methods. After wet mechanical alloying with an appropriate dispersant, significant changes in the powder morphology were observed: most agglomerated W particles were effectively broken up and dispersed, with carbon black uniformly distributed. In contrast, the dry milling method resulted in noticeable agglomeration of W powder, with non-uniform distribution of carbon black.

 

Morphology and Structure of Nano-WC Powder

Figure 3 shows SEM images of different nano-WC powders. The nano-WC powder obtained through wet alloying with carbon was smaller and more uniform, with a well-defined morphology and minimal agglomeration, containing a total carbon content of 6.10-6.30%, a combined carbon content of 6.06%, and an average particle size of about 85 nm. In contrast, the WC powder produced through dry milling exhibited more tightly bound agglomerates and larger particle sizes, with an average size of approximately 189 nm. This discrepancy is attributed to the insufficient breaking of tungsten powder agglomerates during carbon mixing in the latter method, resulting in poor contact between carbon black and tungsten powder and non-uniform carbon distribution. During high-temperature solid-state reactions, the chemical migration process is lengthy and requires significant chemical driving force, making complete carbonization challenging; high temperatures can also cause tungsten particles within agglomerates to grow larger due to sintering.

How is the Properties of Nano-WC Powder Influenced by Carbonization Method? 3

Conclusion

1.Using wet mechanical alloying for carbon mixing followed by carbonization at 1140°C, a well-dispersed and uniform nano-WC powder was produced, with a total carbon content of 6.10-6.30% (controllable), a combined carbon content of 6.06%, and an average particle size of approximately 85 nm.

2.The use of wet milling for carbon mixing altered the agglomerated appearance of the nano-tungsten particles, improving the uniformity of the dispersion of W and C powders. This approach facilitates lower carbonization temperatures and results in uniformly sized and chemically stable nano-WC powders.

Leave a Reply

Your email address will not be published. Required fields are marked *

开心五月激情五月综合-国产88精品久久久久久-乱人伦精品视频在线观看-秘社一区二区三区一午夜日本| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 最近日本中文字幕免费完整-欧美男女性生活真人视频-激情综合网激情综合网激情综合-中文字幕日韩有码国产精品| 最近日本中文字幕免费完整-欧美男女性生活真人视频-激情综合网激情综合网激情综合-中文字幕日韩有码国产精品| 成人精品一区二区三区不卡-十八禁啪啪啪一区二区三区-后入黑丝美女在线观看-国产熟女啪啪免费视频| 国产成人精品亚洲av无人区-91麻豆粉色快色羞羞-亚洲视频欧美日韩国产-亚洲天堂网无吗在线视频免费观看| 蜜桃臀欧美日韩国产精品-最近欧美日韩一区二区-亚洲综合成人一区二区三区-免费五十路熟妇在线视频| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 亚洲激情文学国产激情-一本色道久久综合亚洲精品高-国产精品高清在线播放-九九热视频在线观看精品| 久久精品国产亚洲av五区-日韩麻豆视频在线观看-亚洲欧洲国产成人综合在线-美利坚合众国亚洲视频| 亚洲av日韩av天堂影片精品-熟妇人妻丰满少妇中文-国产精品日本一区二区三区-国产精品熟女乱色一区二区| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 华人精品在线免费观看-国产熟女精品一区二区三区-国产成人午夜视频网址-女女同性女同一区二区三区九色| 九九久久精品国产婷婷-亚洲少妇视频在线观看-国产网友精品自拍视频-超碰在线成人免费精品| 蜜臀网站视频在线播放-四虎午夜福利视频在线观看-黄色国产精品福利刺激午夜片-亚洲精品国产成人av| 日本一区二区三区四区黄色-91在线国产经典观看精品-亚洲一区二区三区免费不卡-av免费在线观看蜜臀| 国产成人av在线不卡-丝袜自拍偷拍日韩欧美一区-91午夜福利一区二区三区在线看-四虎影在永久免费在线观看| 欧美日韩精品视频免费下载-中文字幕一区二区三区伦理-一级特黄大片亚洲高清-午夜欧美日韩精品久久久久| 大奶人妻丝袜中出在线-亚洲一区久久中文字幕-国产成人av剧情自拍网站-嫩草伊人久久精品少妇av| 亚洲天堂成人免费视频-青草精品在线观看视频-国产三级在线观看国产精品-黄色日本黄色欧美视频| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 国产亚洲精品精品国产亚洲综合l-99久久精品午夜一区二-青青草青娱乐免费在线视频-日本久久中文字幕一二三| 传媒精品视频在线观看-久久蜜汁成人国产精品-国产精品伦理视频一区三区-丰满少妇特黄一区二区三区| 欧美日韩在线有码中文-亚洲美女一区二区暴力深喉吞精-亚洲av日韩一区二区三区-国产激情视频在线观看播放| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 欧美精品一区二区三区香蕉-国产精品黄色免费网站-蜜桃av乱码人妻一二三区-国产综合亚洲一区激情国产| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 国产日本高清一区二区三区-久久亚洲成人精品性色-九九热99这里只有精品-亚洲愉拍自拍另类天堂| 天天色天天干天天操天天射-日本午夜一区二区福利激情-国产精品一区中文字幕在线-欧美性生活网站视频观看| 老妇肥熟凸凹丰满刺激-九九热最新视频免费看-亚洲中文字幕乱码视频-国产亚洲精品欧洲在线视频| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 精品国产高清一区二区三区-亚洲av日韩av二区三区篇-亚洲精品一区高潮喷水-中文字幕人妻色偷偷久久皮| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 国产素人一区二区久久-欧美精品不卡在线观看-蜜桃精品一区二区在线播放蜜臀-欧美日韩精品在线一区二区三区| 亚洲免费中文字幕一区二区三区-超碰在线免费在线免费-国产熟女茂密的黑森林-色姑娘久久综合网天天| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 91亚洲综合成人在线-久久精品亚洲av少妇-日本av一区在线视频-9国产精品久久久久麻豆|