色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

WC-Co carbide coal mining bits are vulnerable components in coal mining and excavation machinery. They consist of a low-carbide?steel body that has been quenched and tempered, with WC-Co carbide inserts embedded or brazed onto it. The performance of these bits directly affects coal production capacity, power consumption, excavation performance, and excavation costs, making them a critical factor in economic mining.

During coal cutting, mining bits rotate and cut under high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, and intense frictional heat generated by the contact with coal rock. The cutting edge can reach a temperature of 600-800℃, resulting in significant thermal stresses, as well as other mechanical behaviors such as contact fatigue and even fracture. Under such complex working conditions, mining bits are prone to failure. To effectively extend the service life of these bits and reduce coal mining costs, it is crucial to identify their main failure modes and causes by conducting failure analysis.

What are the 3 Main Failure Modes of Carbide Coal Mining Bits and how can We Address Them? 2

1Failure modes

Carbide coal mining bits are subjected to high cyclic compressive stress, shear and bending stress, periodic or sudden impact loads, thermal stresses, wear, and other effects during coal cutting. Although coal is not particularly hard, they often encounter harder minerals such as quartz and gangue during operation, resulting in failures such as carbide fracture, wear, and breakage.

2 Failure analysis

2.1 Fracture of coal mining bits

During coal cutting, the carbide tooth is exposed to high compressive stress and impact load, leading to poor contact with the coal seam. The stresses can cause impact fatigue, resulting in cracks and the falling off of large pieces. Fracture occurs when the stress exceeds the bending strength limit of the carbide. In addition, during the cutting process, the temperature of the tooth head rapidly increases due to friction, while it rapidly decreases during idle rotation. This process subjects the carbide tooth to periodic tensile-compressive thermal stress, and with the cyclic action of this stress, thermal fatigue cracks will be produced, leading to the fracture of the mining bits. The insufficient bending strength of the carbide is the main cause of fracture, and micro-defects can also produce stress concentration areas leading to fracture.

 

2.2 Wear of coal mining bits

During the process of coal cutting, the coal mining bits?come into direct contact with coal and rock, which results in mutual abrasion. Due to the existence of impurities such as quartz and coal gangue with strong wear resistance in the coal seam, impact fatigue and abrasive cutting will occur, which will cause abrasive wear failure to the cutting teeth. When the coal mining machine coal mining bits?cut through the coal seam, friction generates heat, resulting in a high temperature of 600-800℃ on the surface of the coal mining bits. The temperature rises and falls alternately, which makes the mining cutting teeth suffer from thermal fatigue wear. Meanwhile, under the alternating impact load, the surface of the coal mining bits?will deform and gradually form microscopic cracks. The cracks will continuously expand under periodic impact loads, and the surface cobalt phase will be preferentially consumed. The WC particles will detach due to the loss of the cobalt phase’s bonding effect, eventually resulting in large-scale peeling of the carbide?particles. In addition, there will also be phenomena of large WC particles breaking and losing during the coal cutting process.

2.3 Fracture of coal mining bits

Hard coal mining bits?contain certain inherent defects such as pores, cobalt pools, surface microcracks, and coarse WC particles, which can cause stress concentration and become the fracture source of the carbide. During the coal mining process, due to repeated impacts, extrusions, and wear, the cobalt phase is preferentially squeezed out and lost. The bonding between the WC particles that are bonded together by the cobalt phase’s bonding effect is destroyed, and the WC particles detach. At the same time, at the site where the WC particles are broken and detached due to the impact load, stress concentration will also occur, which is prone to induce the formation and extension of cracks.

3Measures to Improve the Performance of coal mining bits

Based on the analysis of the article, the main reasons for the failure of cemented coal mining bits?are:

  1. The bending strength of the carbideis not enough, and the instantaneous impact load during work can easily reach or even exceed the bending strength value of the carbide.
  2. Quartz and gangue in the coal seam cause wear on the carbide.
  3. Fatigue cracks caused by periodic and sudden impact loads and frictional heat generated by severe friction between the coal mining bitsand the coal seam.

Therefore, in order to improve the efficiency of using cemented coal mining bits, efforts should be made to improve the bending strength, wear resistance, and fatigue resistance of the carbide?in the preparation stage. At the same time, the cooling force of the teeth should be increased during use to reduce the hot and cold cycles of the coal mining bits?and prolong their service life.

3.1 Improve the strength and toughness of coal mining bits

Porosity, WC grain size and distribution, and density differences between the upper and lower parts of cemented carbide are the main factors affecting bending strength and toughness. Currently, people mainly use methods such as preparing non-uniform structure cemented carbide, using coarse-grained ore, gradient structure cemented carbide, adding trace elements to modify the bonding phase, and using new molding and sintering processes to improve the strength and toughness of cemented carbide, thereby prolonging the service life of the carbide. The engineers of Metallurgical Ultra Hard Materials Co., Ltd. believe that, under the premise of appropriately reducing the cobalt content of the carbide, cemented carbide with an average grain size of 5.8 μm WC should be produced. By comparing with ordinary cemented carbide, it is found that the bending strength and toughness of the cemented coal mining bits?produced using coarse-grained WC and low Co content have been improved. In other words, while the coarse-grained carbide?has high wear resistance, its strength and toughness have also been improved.

3.2 Improve the wear resistance of coal mining bits

The wear resistance of cemented carbide is determined by the microstructure and chemical composition of the carbide. Currently, in order to ensure that cemented carbide cutting teeth have good strength and toughness, the cobalt content of the cemented carbide carbide?is generally high. People mainly study the microstructure of cemented carbide, adjust the chemical composition of the carbide, and control the mechanical and physical properties of the carbide?(such as strength, hardness, toughness, etc.) to improve the wear resistance of the carbide. An article pointed out that the wear resistance of the carbide?can be effectively improved by minimizing the occurrence and growth of carbide?defects and adding an appropriate amount of rare earth elements.

failure of carbide coal mining bits

3.3 Improve the fatigue resistance of coal mining bits

Cobalt content and WC grain size are the main factors affecting the fatigue resistance of cemented carbide. The production and expansion depth and speed of thermal fatigue cracks gradually decrease with the increase of cobalt content or WC grain size in the carbide. In addition, the increase in WC grain size will also increase the average free path of the cobalt phase, thereby improving the fatigue resistance of the carbide.

Conclusion

Metyou Carbide Co., Ltd. has conducted a failure analysis on the used carbide coal-cutting teeth recovered from customers and reached the following conclusions:

1)the main forms of carbide coal-cutting teeth failure are fracture, wear, and breakage.

2) the main causes of coal mining bits?failure are insufficient bending strength, poor wear resistance, and poor fatigue resistance of the carbide.

3) the service life of carbide coal-cutting teeth can be improved by means of improving the purity of raw materials, changing the carbide?composition, optimizing the forming and sintering process, controlling the grain size of the carbide, and conducting heat treatment on the carbide.

Leave a Reply

Your email address will not be published. Required fields are marked *

激情综合网激情国产av-2021日韩午夜影院-精品一区二区三区少妇蜜臀-人妻交换av一区二区| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 国产成人综合激情婷婷-亚洲国产综合在线观看不卡-色综网久久天天综合狼人-亚洲av高清在线不卡| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码| 能看免费欧美一级黄片-男女视频网站免费精品播放-日本高清在线一区二区三区-熟女少妇免费视频网站观看| 人妻少妇一区二区三区精品-三级尤物视频在线观看-野花在线中文字幕伊人-亚洲精品一区二区播放| 国产免费福利在线激情视频-自拍偷拍福利视频在线-国产亚洲一区二区三区在线播放-欧美国产日本高清不卡免费| 国产精品欧美日韩视频二区-少妇人妻系列中文在线-精品人妻一区二区三区四区不卡-少妇被无套内谢免费视频| 自拍成人免费在线视频-91在线高清视频播放-国产美女口爆吞精系列-午夜福利黄片在线观看| 国产精品一区在线观看网址-亚洲国产日韩精品理论在线-在线播放视频在线观看视频-黄色片三级三级免费看| 最近日本中文字幕免费完整-欧美男女性生活真人视频-激情综合网激情综合网激情综合-中文字幕日韩有码国产精品| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 成人高清视频在线播放-91麻豆免费观看视频-久久婷香五月综合色吧-自拍自产精品免费在线| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 日本一区二区三区高清视频-九九九热在线观看视频-亚洲综合自拍偷拍人妻丝袜-亚洲精品国产二区三区在线| 午夜精品人妻一区二区三区-亚洲精品成人久久av-成人亚洲av精品入口-高清传媒视频在线观看| 国产精品羞羞答答色哟哟-最新麻豆精品在线视频-丰满多毛熟妇的大阴户-精品国产乱子伦一区二区三女| 日韩色视频免费观看网站大全-免费中文对白国产操片-国产农村妇女一页二页-欧美三级午夜理伦三级在线| 日韩视频精品在线播放-国产91亚洲精品久久-亚欧洲乱码视频在线观看-亚洲国产成人91精品| 高清一区二区三区不卡视频-中午字幕乱码亚洲无线码-亚洲一区二区三区在线视频观看-最新一二三国产精品网址| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 日韩国产自拍在线视频-亚洲av午夜激情在线播放-午夜福利你懂的在线观看-少妇特殊按摩高潮惨叫| 天堂国产精品一区二区三区-亚洲欧美日韩国产精品久久-av毛片黄片在线观看-尤物国产视频在线观看| 少妇被躁潮到高潮无人码-日本欧美一级二级三级不卡-国产一区视频二区视频-亚洲无人区码一二三区别| 激情性插进去视频伦理-成人黄网站免费永久在线观看-青草视频在线观看这里只有精品-国产精品高潮久久呻吟av| 日韩精品视频网在线播放-亚洲综合网一区二区三区偷拍-岛国av在线播放观看-欧美日韩国产另类综合| 四虎永久精品免费在线-国产一级片内射在线播放-国产精品无套粉嫩白浆在线-色综合综合色综合色综合| 国产很黄免费观看久久-亚洲变态另类一区二区三区-欧美在线免费观看黄片-成人av不卡在线播放| 激情综合亚洲欧美调教-亚洲综合日韩精品国产-国产成人亚洲精品av大片-久草青青亚洲毛片在线视频| 成年人午夜黄片视频资源-少妇高潮喷水在线观看-色网最新地址在线观看-人人爽人人澡人人人人妻那u还没| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 亚州一区二区五码在线观看-97在线视频免费公开-小明久久国内精品自线-人妻av天堂综合一区| 日本人妻中文字幕久久-色老汉免费在线观看一区-成人国产在线观看网站-欧美日韩国产亚洲一区二区三区| 开心五月激情综合久久爱-国产精品深夜在线观看-91亚洲国产成人精品一区.-精品亚洲国产成人性色av| 99久久亚洲综合精品成人网-国产性感丝袜在线观看-国产一区二区三区激情啪啪啪-久久香蕉综合国产蜜臀av| 亚洲情综合五月天中文字幕-日韩在线精品视频播放-日韩午夜午码高清福利片-99久久无色码中文字幕免费| 亚洲免费看三级黄网站-日韩国产熟女免费精品老熟女视频-久青草视频免费在线播放-国产日韩精品久久一区二区| 日韩一区二区三区视频在线观看-久久精品亚洲热综合一本色婷婷-国产亚洲精品视频一区二区三区-人妻中文字幕精品系列| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 亚洲免费中文字幕一区二区三区-超碰在线免费在线免费-国产熟女茂密的黑森林-色姑娘久久综合网天天|