色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The fatigue strength of metal materials is very sensitive to various external and internal factors. External factors include the shape and size of the part, surface finish and service conditions, while internal factors include the composition of the material itself, organizational state, purity and residual stress. Subtle changes of these factors will cause fluctuations or even large changes in the fatigue properties of materials.

The influence of various factors on fatigue strength is an important aspect of fatigue research. This research will provide a basis for the reasonable structural design of parts, the correct selection of materials and the rational formulation of various cold and hot machining processes, so as to ensure the high fatigue performance of parts.

effect on fatigue of stress concentration

The conventional fatigue strength is measured by carefully machined smooth specimens. However, the actual mechanical parts inevitably have different forms of notches, such as steps, keyways, threads and oil holes. The existence of these notches causes stress concentration, so that the maximum actual stress at the root of the notch is much greater than the nominal stress borne by the part, and the fatigue failure of the part often starts from here.

7 factors affecting fatigue of metal materials 2

Influence of size factor

Due to the inhomogeneity of the material structure and the existence of internal defects, the increase of the size will increase the failure probability of the material, thus reducing the fatigue limit of the material. The existence of size effect is an important problem in applying the fatigue data measured by small samples in the laboratory to large-scale actual parts. Because it is impossible to reproduce the stress concentration and stress gradient on the actual size parts on the small samples, the laboratory results are disconnected from the fatigue failure of some specific parts.

Influence on fatigue of surface processing state

There are always uneven machining marks on the machined surface, which are equivalent to tiny notches, causing stress concentration on the material surface, thus reducing the fatigue strength of the material. The test shows that for steel and aluminum alloy, the fatigue limit of rough machining (rough turning) is reduced by 10% – 20% or more than that of longitudinal fine polishing. The higher the strength of the material, the more sensitive it is to the surface finish.

Effect of chemical composition

There is a close relationship between the fatigue strength and tensile strength of materials under certain conditions. Therefore, under certain conditions, any alloy element that can improve the tensile strength can improve the fatigue strength of materials. Comparatively speaking, carbon is the most important factor affecting the strength of materials. However, some impurity elements which form inclusions in steel have adverse effects on fatigue strength.

Effect on fatigue of heat treatment and microstructure

Different heat treatment conditions will result in different microstructures. Therefore, the effect of heat treatment on fatigue strength is essentially the effect of microstructure. Although the same static strength can be obtained for materials with the same composition due to different heat treatment, the fatigue strength can vary in a considerable range due to different structures.

At the same strength level, the fatigue strength of flake pearlite is obviously lower than that of granular pearlite. The finer the cementite particles, the higher the fatigue strength.

7 factors affecting fatigue of metal materials 3

Effect of inclusions

The inclusion itself or the holes generated by it are equivalent to tiny notches, which will produce stress concentration and strain concentration under the action of alternating load, and become the crack source of fatigue fracture, causing adverse effects on the fatigue properties of materials. The influence of inclusions on fatigue strength depends not only on the type, nature, shape, size, quantity and distribution of inclusions, but also on the strength level of materials, the level and state of applied stress.

Different types of inclusions have different mechanical and physical properties, different properties from base metal, and different effects on fatigue properties. Generally speaking, plastic inclusions (such as sulfides) that are easy to deform have little effect on the fatigue properties of steel, while brittle inclusions (such as oxides, silicates, etc.) do great harm.

Inclusions with larger expansion coefficient than the matrix (such as sulfide) have less influence due to compressive stress in the matrix, while inclusions with smaller expansion coefficient than the matrix (such as alumina) have greater influence due to tensile stress in the matrix.

The compactness of inclusion and base metal also affects the fatigue strength. Sulfide is easy to deform and closely bond with the base metal, while oxide is easy to separate from the base metal, resulting in stress concentration. Therefore, from the type of inclusions, sulfide has little effect, while oxides, nitrides and silicates are more harmful.

Effect of surface property change and residual stress

In addition to the surface finish mentioned above, the influence of surface state also includes the change of surface mechanical properties and the influence of residual stress on fatigue strength. The change of surface mechanical properties can be caused by the difference of surface chemical composition and structure, or by deformation strengthening.

Surface heat treatment such as carburizing, nitriding and carbonitriding can not only increase the wear resistance of parts, but also improve the fatigue strength of parts, especially an effective means to improve the corrosion fatigue and biting corrosion resistance.

The influence of surface chemical heat treatment on fatigue strength mainly depends on loading mode, carbon and nitrogen concentration in the carburized layer, surface hardness and gradient, the ratio of surface hardness to core hardness, layer depth, and the size and distribution of residual compressive stress formed by surface treatment. A large number of tests show that as long as the notch is machined first and then treated by chemical heat treatment, generally speaking, the sharper the notch is, the more the fatigue strength will be improved.

The effect of surface treatment on fatigue performance is different under different loading modes. Under axial loading, the stress in the surface layer is the same as that under the layer because there is no uneven distribution of stress along the layer depth. In this case, the surface treatment can only improve the fatigue performance of the surface layer. Because the core material is not strengthened, the improvement of fatigue strength is limited. Under bending and torsion conditions, the stress distribution is concentrated in the surface layer. The residual stress formed by surface treatment and this additional stress are superimposed to reduce the actual stress on the surface. At the same time, due to the strengthening of surface materials, the fatigue strength under bending and torsion conditions can be effectively improved.

Leave a Reply

Your email address will not be published. Required fields are marked *

亚洲综合不卡一区二区三区-中文字幕一区二区人妻秘书-国产免费午夜精品理论-中文字幕人妻精品一区二区| 久热视频在线免费观看-亚洲一区二区日韩综合久久-免费观看在线观看青青草视频-精品一区二区亚洲一区二区血炼| 亚洲午夜福利在线看片-草草影院在线观看国产-中文字幕在线国产有码-精品99成人午夜在线| 美性中文网美性综合网-亚洲最大黄色网在线观看-自偷精品视频三级自拍-97精品伊人久久大香| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 日韩亚洲一区二区在线观看-欧美色一区二区三区在线-日韩av黄片在线观看-深夜成人福利在线观看| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 国产精品蜜桃久久一区二区-久久精品熟女亚洲av麻豆蜜臀-日本一区二区精品色超碰-伊人一区二区三区久久精品| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 国产精品一区在线观看网址-亚洲国产日韩精品理论在线-在线播放视频在线观看视频-黄色片三级三级免费看| 色激情五月关键词挖掘-日本精品一区二区三区视频-亚洲精品一区二区三区四区久久-亚洲综合久久激情久久| 在线看片国产福利你懂得-av中文字幕精品一本久久中文字-亚洲一区二区三在线高清真人-日韩在线不卡视频免费看| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 国产精品一线天粉嫩av-亚洲视频在线观看一区二区三-深夜男人福利在线观看-中文字幕国产精品第一页| 91精品欧美人妻一区二区-日本女人体内射精视频-欧美一级一片内射少妇-久久99国产综合精品女人| 久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 日韩av毛片免费播放-国产999热这里只有精品-亚洲第一精品中文字幕-欧美特黄免费在线观看| 久久精品一区二区三区激情-男人天堂手机成人在线-激情五月色婷婷中文字幕-国产精品久久久久久人四虎| 看日本全黄色免费a级-丝袜美腿在线观看视频一区-亚洲av熟女国产一二三-国产日韩av一区二区三区蜜臀| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 国内自拍精品视频在线-欧美黑人巨大一区二区三区-中文字幕日韩精品人妻-婷婷激情五月天中文字幕| 午夜视频在线观看色诱-久久精品午夜福利视频-熟妇人妻av一区二区三区-一区二区三区中文字幕在线观看| 国产精品爽爽va在线观看-亚洲av永久一区二区三区综合-成人av免费大片黄在线观看-一本一道久久a久久综合精品| 五月婷婷丁香综合入口-日本少妇免费中文字幕-96青草视频在线观看-中文字幕成人精品久久不卡| 日韩国产自拍在线视频-亚洲av午夜激情在线播放-午夜福利你懂的在线观看-少妇特殊按摩高潮惨叫| 一本久道热线在线视频-精品人妻在线中文字幕-亚洲av成人av天堂色多多-国产牛奶粉哪个品牌好| 日韩av毛片在线播放-亚洲一区二区在线观看网站-18禁网站在线免费观看-亚洲精品夜夜黄无码99| 国产精品一区二区小视频-欧美亚洲国产精品激情在线-日韩免费视频一区二区三区视频-精品亚洲国产成av人片传媒| 亚洲成人av在线播放不卡-亚洲视频一直看一直爽-一区二区三区精品视频日本-精品人妻久久一日二个| 成a级人在线观看网站免费看-久久久精品国产亚洲av水蜜桃-亚洲第一狼人在线观看-黄色欧美精品一区二区三区| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 日韩少妇高潮免费在线观看-亚洲中文字幕乱码在线观看-日本高清一区二区三区高清-亚洲午夜天堂av毛片| 国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 国产美女高潮久久精品-国产成人精品十八禁在线播放-成在线人视频免费视频-97超级视频在线观看| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 亚洲手机在线视频亚洲毛-欧美91精品国产自产在线-国产一区二区中文字幕在线视频-国产av91在线播放| 偷拍一区二区三区视频播放器-亚洲欧洲日产韩国综合-国产精品久久精品亚洲-国产乱淫av麻豆国产| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 绯色av一区二区三区亚洲人妻-99热这里只有精品小说-在线播放国产日韩不卡免费视频-国产高清在线不卡一区二区视频| 亚洲精品综合久中文字幕-色老头国产av一区二区三区-久久夜色精品亚洲噜噜国产-资源新版在线天堂偷自拍| 亚洲中文成人乱码在线-国产一区二区三区久久综合-成人在线观看免费国产视频-一区二区水蜜桃视频在线观看|