色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Turning refers to lathe processing, which is a part of machining. Lathe processing mainly uses turning tools to turn the rotating workpiece. Lathe is mainly used to process shaft, disc, sleeve and other workpieces with rotary surface. It is the most widely used machine tool in machinery manufacturing and repair factory.

Talking about the Experience of Machining 2

The skills of lathe workers are endless. The most common lathe workers don’t need too high skills. Can be divided into five categories of Turner, which is currently the most common in society

1.General mechanical lathe, easy to learn, find a lathe processing department, better than you learn in school

2.Mold Turner, especially plastic mold precision Turner! Strict requirements for cutting tools, accurate size

3.Tool Turner, reamer, drill, alloy cutter head, this kind of Turner is the simplest, the best and the most tiring

4. Large equipment Turner, this kind of Turner must have senior technology, young people dare not to drive!!

5. CNC lathe, this kind of lathe is the simplest and the most difficult. First of all, you should be able to see the drawing, programming, conversion formula, tool application!!!

As long as you master the lathe theory and have some knowledge of mathematics, machinery and CAD, you can learn it quickly

Brief intro

It is to change the shape and size of the blank by using the rotary motion of the workpiece and the linear or curvilinear motion of the cutter on the lathe, and process it to meet the requirements of the drawing.

Turning is a method of cutting workpiece by using workpiece relative to tool rotation on lathe. The cutting energy of turning is mainly provided by the workpiece rather than the tool. Turning is the most basic and common cutting method, which plays a very important role in production. Turning is suitable for machining rotary surface. Most workpieces with rotary surface can be machined by turning method, such as inner and outer cylindrical surface, inner and outer conical surface, end face, groove, thread and rotary forming surface, etc.

In all kinds of metal cutting machine tools, lathe is the most widely used one, accounting for about 50% of the total number of machine tools. The lathe can not only turn the workpiece with turning tool, but also drill, ream, tap and knuckle with drill, reamer, tap and knuckle. According to the process characteristics, layout and structural characteristics, lathes can be divided into horizontal lathes, floor lathes, vertical lathes, turret lathes and copying lathes. Most of them are safety technical problems of horizontal lathes. Turning is the most widely used one in the machine manufacturing industry. There are a large number of lathes, a large number of people, a wide range of processing, and the tools and tools used There are many kinds of fixtures, so the safety technology of turning is particularly important

1. Chip damage and protective measures.

2. Loading of workpiece.

3. Safe operation.

 

cautions

The processing technology of CNC lathe is similar to that of ordinary lathe, but because CNC lathe is one-time clamping, continuous and automatic processing to complete all turning processes, we should pay attention to the following aspects.

1.Choose fit cutting parameter:

Talking about the Experience of Machining 3

For high efficiency metal cutting, the processed materials, cutting tools and cutting conditions are the three major elements. These determine the processing time, tool life and processing quality. The economic and effective machining method must be reasonable selection of cutting conditions. The three elements of cutting conditions: cutting speed, feed and cutting depth directly cause tool damage. With the increase of cutting speed, the temperature of tool tip will rise, which will produce mechanical, chemical and thermal wear. If the cutting speed is increased by 20%, the tool life will be reduced by 1 / 2. The relationship between the feed condition and the tool wear is very small. But when the feed rate is large, the cutting temperature rises, and the back wear is large. It has less influence on the tool than the cutting speed. Although the influence of cutting depth on the tool is not as big as cutting speed and feed rate, the hardened layer of the material to be cut will also affect the life of the tool. The user should select the cutting speed according to the material, hardness, cutting state, material type, feed rate, cutting depth, etc. The most suitable processing conditions are selected on the basis of these factors. Regular and stable wear is the ideal condition. However, in the actual operation, the selection of tool life is related to tool wear, dimension change, surface quality, cutting noise, processing heat and so on. In determining the processing conditions, it is necessary to study according to the actual situation. For stainless steel and heat-resistant alloy and other difficult to machine materials, you can use coolant or choose a rigid blade.

2.choose fit machining tool:

(1) In rough turning, the cutting tools with high strength and good durability should be selected, so as to meet the requirements of large back feed and large feed.

(2) When finishing turning, the cutting tools with high precision and good durability should be selected to meet the requirements of machining accuracy.

  • In order to reduce the tool changing time and facilitate tool setting, the machine clamping tool and machine clamping blade should be used as far as possible.

3.choose fit clamping:

(1) Try to use general fixture to clamp workpiece, avoid using special fixture

  • In order to reduce the positioning error, the positioning datum of parts coincides.

4. Determine the processing route: the processing route refers to the movement track and direction of the cutter relative to the part in the process of CNC machine tool processing.

It should be able to meet the requirements of machining accuracy and surface roughness;

The processing route should be shortened as far as possible to reduce the tool idle travel time.

5. The relationship between machining path and machining allowance

At present, under the condition that the numerical control lathe has not been widely used, it is generally necessary to arrange the excessive allowance on the blank, especially the allowance with forging and casting hard skin layer, to be processed on the ordinary lathe. If must use the numerical control lathe processing, then needs to pay attention to the program flexible arrangement.

6. Key points of fixture installation:

At present, the connection between the hydraulic chuck and the hydraulic clamping cylinder is realized by the * pull rod, and the clamping points of the hydraulic chuck are as follows: first, remove the nut on the hydraulic cylinder with the handle, remove the pull pipe, and pull it out from the rear end of the spindle, and then remove the fixed screw of the chuck with the handle to remove the chuck

General code

General process code for turning (JB / t9168.2-1998)

The extension of the turning tool holder should not be too long. Generally, the length should not exceed 1.5 times the height of the tool holder (except for turning holes, grooves, etc.)

The center line of the turning tool bar should be perpendicular or parallel to the tool running direction.

1. Adjustment of tool tip height:

When turning the end face, the conical surface, the thread, the forming surface and the solid workpiece, the tool tip should be equal to the axis of the workpiece.

Generally, rough turning, fine turning and tool tip should be slightly higher than workpiece axis.

When turning thin long axis, rough hole and cutting hollow workpiece, the tool tip should be slightly lower than the workpiece axis.

The bisector of the sharp angle of the thread turning tool should be perpendicular to the axis of the workpiece.

When clamping the turning tool, the gasket under the tool bar should be less and flat, and the screw for pressing the turning tool should be tightened.

2.Workpiece clamping

1) When the workpiece is clamped with three jaw self centering chuck for rough turning or finish turning, if the diameter of the workpiece is less than 30mm, the overhanging length shall not be more than 5 times of the diameter; if the diameter of the workpiece is more than 30mm, the overhanging length shall not be more than 3 times of the diameter.

2) When using four jaw single action chuck, flower plate, angle iron (bending plate) to clamp irregular heavy workpieces, counterweight must be added.

3) When machining shaft workpiece between centers, the axis of tailstock center should be adjusted to coincide with the axis of lathe spindle before turning.

4) When machining slender shaft between two centers, heel rest or center rest should be used. In the process of machining, we should pay attention to adjust the top tightening force of the center, and pay attention to the lubrication of the dead center and the center frame.

5) When using tailstock, the sleeve should be extended as short as possible to reduce vibration.

6) When the workpiece with small bearing surface and high height is clamped on the vertical lathe, the heightened claw shall be used, and the pull rod or pressing plate shall be added at the appropriate position to compress the workpiece.

7) When turning wheel and sleeve castings and forgings, they should be aligned according to the surface that is not machined, so as to ensure the uniform wall thickness of the workpiece after machining.

3.turning machining

1) When turning step shaft, in order to ensure the rigidity of turning, generally the larger diameter part should be turned first, and then the smaller diameter part.

2) When slotting the workpiece on the shaft, it should be done before finishing to prevent deformation of the workpiece.

3) When finishing turning the shaft with thread, it is generally necessary to finish turning the unthreaded part after thread processing.

4) Before drilling, the end face of the workpiece should be turned flat. If necessary, the center hole should be drilled first.

5) When drilling a deep hole, the pilot hole is usually drilled first.

6) When turning (Φ 10-Φ 20) mm holes, the diameter of the tool bar should be 0.6-0.7 times of the hole diameter to be machined; when machining holes with diameters larger than Φ 20 mm, the tool bar with clamping tool head should be generally used.

7) When turning multi head thread or multi head worm, try cutting should be carried out after adjusting the exchange gear.

8) When using the automatic lathe, the relative position of the cutter and the workpiece should be adjusted according to the adjustment card of the machine tool. After the adjustment, the trial cutting should be carried out, and the machining can be carried out only after the first piece is qualified. In the process of machining, attention should be paid to the wear of the cutter and the size and surface roughness of the workpiece at any time.

9) When turning on the vertical lathe, when the tool rest is adjusted, it is not allowed to move the beam at will.

10) When there are position tolerance requirements on the surface of the workpiece, try to finish turning in one clamping.

11) When turning cylindrical gear blank, the hole and reference end face must be machined in one clamping. If necessary, mark the line near the gear indexing circle of the end face.

4.error compensation

Modern mechanical manufacturing technology is developing towards high efficiency, high quality, high precision, high integration and high intelligence. Precision and ultra precision machining technology has become the most important part and development direction of modern machinery manufacturing, and has become the key technology to improve the international competitiveness. With the wide application of precision machining, turning error has become a hot topic. Because thermal error and geometric error account for the majority of all kinds of errors of machine tools, reducing these two errors, especially the thermal error, has become the main goal. With the continuous development of science and technology, error compensation technology (ECT) appears and develops. The loss caused by thermal deformation of machine tool is quite large. Therefore, it is necessary to develop a high-precision and low-cost thermal error compensation system to correct the thermal error between the spindle (or workpiece) and the cutting tool, so as to improve the machining accuracy of the machine tool, reduce the waste products, and increase the production efficiency and economic benefits.

Basic definition and characteristics of error compensation

The basic definition of error compensation is to artificially create a new kind of error to offset or greatly weaken the original error which has become a problem at present. Through analysis, statistics, induction and mastering the characteristics and laws of the original error, the error mathematical model is established to make the artificial error and the original error equal in value and opposite in direction as far as possible, so as to reduce the machining error and improve the accuracy of parts The accuracy of the measurement.

The earliest error compensation was realized by hardware. Hardware compensation belongs to mechanical fixed compensation. To change the compensation amount when the error of machine tool changes, it is necessary to remake parts, calibration ruler or adjust the compensation mechanism. Hardware compensation can not solve the problem of random error and lack of flexibility. The characteristic of software compensation is that it can improve the machining accuracy of machine tool by using the advanced technology and computer control technology of various subjects without any change to the machine tool itself. Software compensation overcomes many difficulties and shortcomings of hardware compensation and pushes compensation technology to a new stage.

Error compensation (Technology) has two main characteristics: scientific and engineering

The rapid development of scientific error compensation technology has greatly enriched the theory of precision mechanical design, precision measurement and the whole precision engineering, and has become an important branch of this discipline. The technologies related to error compensation include detection technology, sensing technology, signal processing technology, photoelectric technology, material technology, computer technology and control technology. As a new branch of technology, error compensation technology has its own independent content and characteristics. It is of great scientific significance to further study the error compensation technology and make it theoretical and systematic.

The engineering significance of engineering error compensation technology is very significant, which includes three meanings: first, using error compensation technology can easily achieve the accuracy level that “hard technology” can only achieve at a great cost; second, using error compensation technology can solve the accuracy level that “hard technology” usually can not achieve; third, using error compensation technology can solve the problem that “hard technology” can not achieve; Third, under the condition of meeting certain accuracy requirements, if the error compensation technology is adopted, the cost of instrument and equipment manufacturing can be greatly reduced, which has very significant economic benefits.

Generation and classification of thermal error in turning

With the further improvement of the accuracy requirements of machine tools, the proportion of thermal error in the total error will continue to increase, and the thermal deformation of machine tools has become the main obstacle to improve the machining accuracy. Thermal error of machine tool is mainly caused by thermal deformation of machine tool components caused by internal and external heat sources such as motor, bearing, transmission parts, hydraulic system, ambient temperature, coolant, etc. Geometric errors of machine tools come from manufacturing defects, matching errors between machine parts, dynamic and static displacement of machine parts, etc. Basic methods of error compensation

To sum up and related references, it can be seen that turning errors are generally caused by the following factors:

Thermal deformation error of machine tool; geometric error of machine parts and structure; error caused by cutting force; tool wear error; other error sources, such as servo error of machine shafting, CNC interpolation algorithm error, etc.

There are two basic methods to improve the accuracy of machine tools: error prevention method and error compensation method.

The error prevention method tries to eliminate or reduce the possible error sources through design and manufacturing. To a certain extent, the error prevention method is effective to reduce the temperature rise of heat source, balance the temperature field and reduce the thermal deformation of machine tool. However, it is impossible to completely eliminate the thermal deformation, and the cost is very expensive;

The application of thermal error compensation law opens up an effective and economic way to improve the accuracy of machine tools.

 

Leave a Reply

Your email address will not be published. Required fields are marked *

久久精品国产久精国产爱-久久超碰97中文字幕-久热这里只有精品视频一区-日韩av在线免费观看| 中文字幕国产剧情av-久久精品日韩欧美精品-玖玖热视频这里只有精品-国产黄色三级视频网站| 在线三级电影在线观看-在线成人激情自拍视频-日本在线视频播放91-国产精品一区二区男女羞羞无遮挡| 亚洲中文字幕五月五月婷-极品毛片av一区二区三区-欧美精品天堂一区二区不卡-精品一区二区不卡在线播放| 免费观看一区二区av蜜桃-免费一级特黄久久大片-每日更新日韩中文字幕有码-97视频在线观看午夜| 极品美女色诱视频在线-欧美久久天天综合香蕉伊-久久精品人人澡夜夜澡-亚洲一区二区三区四区伦理| 亚洲中文字幕高清乱码毛片-国产成人午夜福利精品-久久毛片绝黄免费观看-国产亚洲成性色av人片在线观| 人妻少妇中文字幕久久精品-水蜜桃av一区二区三区在线观看-日韩熟女精品一区二区三区-久久国产综合激情对白| 色和尚在线视频久天天-少妇高潮太爽了在线免费观看-伊人久久大香线蕉午夜av一区-亚洲国产精品不伦不卡| 看日本全黄色免费a级-丝袜美腿在线观看视频一区-亚洲av熟女国产一二三-国产日韩av一区二区三区蜜臀| 亚洲国产日韩欧美性生活-开心激情五月婷婷丁香-久久精品国产亚洲av热片-国产日产精品视频一区二区三区| 亚洲天堂av中文在线-亚洲精品有码中文字幕网络-在线播放国产一区二区不卡-香港毛片免费观看视频| 乱女乱妇熟女熟妇综合网-亚洲都市激情中文字幕-日韩精品中文字幕在线-在线观看国产中出白浆| 免费岛国av在线观看-国产一区二区三区av在线-亚洲成人精品综合在线-日韩亚洲一区二区三区在线| 成人深夜视频免费在线观看-国产极品裸体av在线激情网-欧美色区国产日韩亚洲区-中文字幕番号免费观看| 91精品国产福利在线观看-av在线免费观看播放-日本岛国免费在线观看-国产高清视频一区二区三区四区| 国产精品一区二区蜜桃视频-四十路五十路熟女丰满av-成人av天堂中文在线-亚洲精品成人国产在线| 日韩精品中文字幕第二页-日本午夜剧场在线观看-毛片在线观看免费日韩-日韩午夜理论中文字幕毛片| 99久久精品视频在线-日韩精品免费完整版视频-精品久久久久久久亚洲婷婷综合-久久精品国产亚州av| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 九九热这里只有精品在线免费视频-色一情一乱一乱一十九区-国产午夜福利视频在线观看-久草免费手机在线视频观看| 亚洲av一区二区三区av-国产av一区二区三区香蕉-久久超碰免费欧美人妻-九一精品人妻一区二区三区| 欧美日韩偷拍丝袜美女二区-精品少妇人妻av免费久久洗澡-四虎精品永久在线观看视频-亚洲国产成人一区二区在线观看| 日韩成人深夜免费在线观看-成人av一区二区在线播放-日韩无套内射免费精品-国产精品一区白嫩在线观看| 未满十八禁止免费观看网站-国产夫妻福利在线观看-亚洲国产黄色精品在线-日韩亚洲一卡二卡三卡| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 国产精品午夜免费福利-亚洲香蕉视频网在线观看-四虎私人福利妞妞视频-91国产丝袜在线观看| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 91老熟女老女人国产老太-av在线亚洲av男人的天堂-国产精品久久久区三区天天噜-能看不卡视频网站在线| 日韩人妻一区二区三区免费-日韩午夜精品中文字幕-国产三级精品大乳人妇-一级女性全黄久久生活片免费| 国产一区二区在线观看不卡-日本高清中文字幕有码在线-日本女优在线观看一区二区三区-在线观看免费四虎av| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 国产精品毛片二区视频播-尤物视频在线看免费观看-亚洲中文字幕亚洲中文字幕-日本黄色成人福利网站| 亚洲国产日韩欧美高清-偷窥偷拍一区二区三区四区-国产国亚洲洲人成人人专区-日本韩国午夜视频在线观看| 亚洲乱码中文字幕小综合-欧美亚洲国产精品一区二区-中文字幕人妻系列人妻有码中文-一区二区三区在线观看的视频| 国产三级一区二区三区视频在线-日韩av在线视频网站-99久国产精品午夜性色福利-精品国产女同一区二区三区| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 热99在线视频免费观看-日本老男人同性恋黄色.-精品国产一区二区三区四不卡在线-久亚洲一线产区二线产区三线麻豆| 亚洲国产成人不卡高清麻豆-精品国产精品三级在线专区-亚洲欧美国产日韩一区-亚洲高清日本一区二区| 99久久久国产精品视频-亚洲最大的福利视频网站-日韩人妻精品一区二区在线-中文字幕乱码精品在线观看|