色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

The welding characteristics of austenitic stainless steel: the elastic and plastic stress and strain are very large in the welding process, but there are few cold cracks. There is no quenching hardening zone and grain coarsening in welded joint, so the tensile strength of weld is high.

The main problems of austenitic stainless steel welding are: large welding deformation; because of its grain boundary characteristics and sensitivity to some trace impurities (s, P), it is easy to produce hot cracks.

Five major welding problems and treatment measures of austenitic stainless steel

The formation of chromium carbide reduces the intergranular corrosion resistance of welded joints

Intergranular corrosion: according to the theory of poor chromium, when the weld and heat affected zone are heated to 450 ~ 850 ℃ sensitization temperature zone, chromium carbide precipitates on the grain boundary, resulting in poor chromium grain boundary, which is not enough to resist corrosion. Zero

(1) The following measures can be adopted to limit the intergranular corrosion of weld and the corrosion of sensitized temperature zone on the target material

a. In order to avoid the formation of Cr23C6, stabilizing elements such as Ti and Nb were added to the base metal to reduce the carbon content in the base metal and weld.

b. The dual phase structure of austenite and a small amount of ferrite is formed in the weld. When there is a certain amount of ferrite in the weld, the grain size can be refined, the grain area can be increased, and the amount of chromium carbide precipitation per unit area of grain boundary can be reduced.

Cr23C6 is preferentially formed in ferrite instead of poor chromium at austenite grain boundary; ferrite between austenite can prevent corrosion from diffusing into interior along grain boundary.

c. Control the residence time in the sensitization temperature range. Adjust the welding thermal cycle to shorten the residence time of 600-1000 ℃ as much as possible. The welding method with high energy density (such as plasma argon arc welding) can be selected. The welding line energy is smaller. Argon gas is applied to the back of the weld or copper pad is used to increase the cooling rate of the welded joint. The number of arc striking and arc stopping is reduced to avoid repeated heating. The contact surface between multi-layer welding and corrosive medium is as last as possible Welding, etc.

d. After welding, solid solution treatment or stabilization annealing (850-900 ℃) should be carried out after heat preservation and air cooling to fully precipitate carbide and accelerate chromium diffusion.

(2) For this reason, the following preventive measures can be taken:

Due to the strong diffusion ability of carbon, it will segregate in the grain boundary and form supersaturation state during cooling, while Ti and Nb will remain in the crystal due to the low diffusion ability. When the welded joint is reheated in the sensitized temperature range, the supersaturated carbon will precipitate in the form of Cr23C6.

a. Reduce carbon content. For stainless steel containing stabilizing elements, the carbon content should not exceed 0.06%.

b. Adopt reasonable welding process. In order to reduce the residence time of overheated zone at high temperature, a smaller welding line energy should be selected to avoid “medium temperature sensitization” effect in the welding process.

In case of double side welding, the weld contacting with corrosive medium should be welded last (this is the reason why internal welding of large diameter thick wall welded pipe is carried out after external welding). If it cannot be implemented, the welding specification and weld shape should be adjusted to avoid the overheated area contacting with corrosive medium from being sensitized again.

c. Post weld heat treatment. After welding, solid solution or stabilization treatment shall be carried out.

Why do You Having Problems Frequently when Welding Stainless Steel? 2

Stress corrosion cracking

The following measures can be taken to prevent the occurrence of stress corrosion cracking:

a. Correct selection of materials and reasonable adjustment of weld composition. High purity chromium nickel austenitic stainless steel, high silicon chromium nickel austenitic stainless steel, ferrite austenite stainless steel and high chromium ferrite stainless steel have good stress corrosion resistance. When the weld metal is austenitic ferrite dual phase steel, the stress corrosion resistance is good.

b. Eliminate or reduce the residual stress. The surface residual stress was reduced by polishing, shot peening and hammering.

c. Reasonable structural design. In order to avoid large stress concentration.

Why do You Having Problems Frequently when Welding Stainless Steel? 3

Welding hot crack (weld crystallization crack, HAZ liquefaction crack)

The hot crack sensitivity mainly depends on the chemical composition, microstructure and properties of the material. Ni is easy to form low melting point compounds or eutectic with impurities such as s and P. segregation of boron and silicon will promote hot cracking.

It is easy to form coarse columnar crystal structure with strong directivity, which is conducive to the segregation of harmful impurities and elements, thus promoting the formation of continuous intergranular liquid film and improving the sensitivity of hot cracking. If the welding is heated unevenly, it is easy to form large tensile stress and promote the generation of welding hot cracks.

Preventive measures:

a. The contents of harmful impurities s and P should be strictly controlled.

b. Adjust the structure of weld metal. The δ phase in the weld can refine the grain size, eliminate the directionality of single-phase austenite, reduce the segregation of harmful impurities in the grain boundary, and the δ phase can dissolve more s and P, reduce the interface energy and form the liquid film between grains.

c. Adjust the composition of weld metal alloy. The sensitivity to hot cracking can be reduced by adding Mn, C, N and trace elements such as cerium, pickaxe and tantalum in single phase austenitic steel.

d. Process measures. In order to prevent the formation of coarse columnar grains, the small heat input and small cross-section weld bead should be used.

For example, 25-20 austenitic steel is prone to liquefying cracks. By strictly limiting the impurity content and grain size of the base metal, adopting high energy density welding method, small line energy and increasing the cooling rate of the joint, etc.

Why do You Having Problems Frequently when Welding Stainless Steel? 4

Embrittlement of welded joint

The plasticity of welded joint should be guaranteed for hot strength steel to prevent high temperature embrittlement; low temperature steel should have good low temperature toughness to prevent brittle fracture of welded joint at low temperature.

Welding deformation is large

Due to the low thermal conductivity and large expansion coefficient, the welding deformation is large, so the fixture can be used to prevent deformation. Selection of welding methods and welding materials for austenitic stainless steel: austenitic stainless steel can be welded by TIG, MIG, paw and saw.

The welding current of austenitic stainless steel is small because of its low melting point, small thermal conductivity and high resistance coefficient. Narrow weld and narrow pass should be used to reduce high temperature residence time, prevent carbide precipitation, reduce weld shrinkage stress and reduce hot crack sensitivity.

The composition of welding material, especially Cr and Ni, is higher than that of base metal. The welding material containing a small amount of ferrite (4-12%) is used to ensure good crack resistance (cold cracking, hot cracking and stress corrosion cracking) of the weld.

When ferrite phase is not allowed or impossible to exist in the weld, the welding material containing Mo, Mn and other alloy elements should be selected.

C, s, P, Si and Nb in welding materials should be as low as possible. NB may cause solidification cracks in pure austenite weld, but a small amount of ferrite in the weld can be effectively avoided.

Nb containing welding materials are usually used for welding structures which need to be stabilized or stress relieved after welding. When submerged arc welding is used to weld medium plate, the burning loss of Cr and Ni can be supplemented by the transition of alloy elements in flux and welding wire;

Due to the deep penetration, attention should be paid to prevent the formation of hot cracks in the central zone of the weld and the reduction of corrosion resistance in the heat affected zone. Attention should be paid to the selection of thinner welding wire and smaller welding line energy. The welding wire should be low in Si, s and P.

The ferrite content in weld of heat-resistant stainless steel should not be more than 5%. For austenitic stainless steel with more than 20% Cr and Ni, high Mn (6-8%) welding wire and alkaline or neutral flux should be selected to prevent Si addition to weld and improve its crack resistance.

The special flux for austenitic stainless steel increases little Si, which can transfer alloy to the weld and compensate the burning loss of alloy elements to meet the requirements of weld performance and chemical composition.

Why do You Having Problems Frequently when Welding Stainless Steel? 5
精品人妻一区二区三区三区四区-亚洲中文字幕熟女一区二区-91久久精品国产91性色69-国产精品中文字幕中文字幕| 91精品天堂福利在线观看漫画-亚洲国产精品一区亚洲国产-亚洲国产成人最新精品资源-亚洲国产精品成人综合久| 亚洲天堂av资源在线-四虎永久免费在线观看国产-久久这里只有精品人妻-欧美黄色三级经典精品| 岛国精品一区二区三区-国产一区二区三区观看不卡av-四虎三级在线视频播放-亚洲乱妇熟女爽到高潮| 免费人成视频在线播放-成人级a爱看片免费观看-激情偷乱在线视频播放网-激情综合网激情综合网激情| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| 中文在线字幕亚洲精品-91麻豆天美精东蜜桃专区-黄色av电影免费在线观看-国产三级四级在线播放| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 成熟女人毛茸茸的免费视频-91麻豆精品国产自产在线游戏-国产男女猛烈无遮挡免费视频-一级黄片国产精品久久| av毛片天堂在线观看-亚洲av成人午夜亚洲美女在线-九九久久精品国产免费av-亚洲av永久精品免费| av天堂一区二区三区在线观看-一区二区三区在线观看蜜桃-激情在线免费观看国产视频-国产精品国产三级国产三不| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 欧美激情av一区二区三区-美国性感美女抠逼直播视频-亚洲国产精品视频在线播放-日本一高清二区视频久二区| 四虎av免费在线播放-久久精品国产熟女亚洲-日韩美女黄色录像播放-久久亚洲日本熟女精品视频| 国产精品人成在线播放蜜臀-老司机午夜福利视频在线-亚洲激情av免费观看-国产情侣91在线观看| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 一级女性全黄久久生活片-日韩久久精品视频在线观看-国产精品色午夜免费视频-亚洲码欧洲码一区二区三区| 四只虎视频大全免费观看-日本黄色激情免费网站-免费岛国大片在线播放-国产午夜福利在现观看| 亚洲天堂久久中文字幕-高清国产一级片免费看-伊人狼人综合日日夜夜-手机看片高清国产日韩| 日韩美女一区二区三区不卡顿-日本女优搜查官中文字幕-国产精品中文字幕自拍-欧美日韩天天干夜夜操| 亚洲老妈激情一区二区三区-夜晚福利视频亚洲精品自拍视频-亚洲av永久精品一区二区在线-中文国产人精品久久蜜桃| 亚洲综合精品一区二区在线-国产亚洲精品视频在线播放-国产精品经典三级免费观看-五月婷婷六月丁香视频| 国内自拍精品视频在线-欧美黑人巨大一区二区三区-中文字幕日韩精品人妻-婷婷激情五月天中文字幕| 激情六月综合激情六月-韩国国产日韩在线观看视频-久久精品国产亚洲av高清色-亚洲熟女乱码一区二区三区| 欧美黄色在线观看免费-日本高清精品一卡二卡-日本综合精品一区二区在线-国产精品伦人一久二久三久| 日韩亚洲高清在线一区二区三区-国产无遮挡爆操美女老板-伊人久久亚洲精品国产av-国产亚洲综合成人在线| 99精品一区二区成人精品-激情自拍视频在线观看-久久热这里只有精品视频-伊人色综合九久久天天蜜桃| 亚洲女人性开放视频免费-亚洲婷婷精品久久久久-亚洲中字字幕中文乱码-韩日av不卡一区二区三区| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 国内国产精品国产三级-美女性爽潮喷白丝小仙女-国产精品自拍露脸在线-国产精品亚洲综合日韩| 亚洲熟女少妇中文字幕-日韩精品一区二区三区激情视频-一个人看的视频在线播放-亚洲综合一区二区国产精品| 国产精品美乳在线播放-久久午夜伦鲁鲁片免费-尤物视频免费在线观看-中文在线在线天堂中文| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 少妇一级aa一区二区三区片-欧美欧美欧美欧美一级片-91在线观看视频下载-自拍视频在线观看一区二区| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 成年人有性生活正常吗-亚洲熟女熟妇五十路熟女熟妇-亚洲精品一区二区高清在线-日本视频在线播放91| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 亚洲av免费网址大全-中文字幕日韩精品东京热-国产综合亚洲成人av-国产白丝美女av在线|