色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

When WC grains in cemented carbide are less than 0.5 μ m, the finer the grains are, the fewer the defects are, and the higher the bending strength and hardness are The particle size of WC powder used to produce ultrafine cemented carbide is much smaller than that of WC powder used in general cemented carbide. The WC powder has high activity and is easy to cause grain growth in the sintering process, which is one of the crack sources.

At present, there are two main methods to control the grain size:

First, a new sintering process is adopted. The results show that the densification of dozens of nano WC Co composite powders can be completed after sintering at 1400 ℃ for 30s, and the grain size is 0.2 μ m, but if the sintering time is extended to 60s, the grain size will grow rapidly to 2.0 μ M. The new sintering processes that can be used for nano WC Co cemented carbide composite powder mainly include microwave sintering, hot isostatic pressing sintering, discharge plasma sintering and two-stage sintering.

Second, adding inhibitors of grain growth to inhibit grain growth, VC, TAC and Cr3C2 are often used inhibitors.

In this paper, the inhibition mechanism, the factors affecting the effect of inhibitors, the way of adding inhibitors, the commonly used inhibitors, the development of the latest inhibitors and the influence of inhibitors on the comprehensive properties of alloys are introduced.

Application of Grain Growth Inhibitors in Cemented Carbide 2

Inhibition mechanism and influencing factors of inhibitors

The driving force for the grain growth of cemented carbide comes from the reduction of surface energy. The grain growth of WC is mainly through the dissolution precipitation mechanism of WC, that is, small grain WC dissolves in the liquid phase and precipitates on the surface of large grain WC. For WC Co cemented carbides, the coarsening of WC grains can be limited by the addition of grain growth inhibitors.  

The addition of inhibitors slows down the dissolution precipitation rate of WC, and there are three inhibition mechanisms:

1. The inhibitor adsorbs on the surface of carbide particles, which reduces the surface energy of WC and the solubility of WC in liquid phase.

2. The inhibitor dissolves in liquid CO, which slows down the growth of WC through liquid recrystallization.

3. The migration of WC interface was hindered by the segregation of inhibitors along WC / WC interface, which prevented the aggregation and growth of WC particles.

The inhibition effect of inhibitors is determined by the following factors:

1. Decreasing the particle size of WC powder increases the grain boundary area of WC Co. inhibitors can be widely distributed on the surface of WC, but they can not be increased indefinitely. Their limit value depends on their saturation concentration in the bonding phase.

2. Cobalt content. With low content of binder and short free stroke, the inhibitor is easy to play its role at a certain temperature.

3. Uniformity of powder mixing. The uneven distribution of the binder phase in the mixed powder will lead to the difference of the effect area of inhibitors on WC grain growth in the sintering process; the uneven distribution or large size of the inhibitors in the mixed powder will lengthen the diffusion route required by the inhibitors

4. Alloy sintering temperature. With the increase of sintering temperature, the amount of liquid phase and the content of grain growth inhibitor need to be increased in order to keep the high concentration of inhibitor in the liquid phase Therefore, the smaller the powder size, the lower the cobalt content, the more uniform the powder mixing and the lower the sintering temperature are, the better the inhibition effect of the inhibitor is.

Application of Grain Growth Inhibitors in Cemented Carbide 3

Adding ways of grain growth inhibitor

Inhibitors are mainly added in three ways:

1. WC, CO and grain growth inhibitor were mixed in the wet grinding process.

2. Before w carbonization, oxide corresponding to grain growth inhibitor was mixed.

3. The third method is to wet mix the salt solution of the inhibitor with blue tungsten or yellow tungsten, and form coating powder with blue tungsten or yellow tungsten before reduction, and then conduct further thermal decomposition and reduction.

Application of Grain Growth Inhibitors in Cemented Carbide 4

Types of grain growth inhibitors

Transition metal carbides

Transition metal carbides are common inhibitors of grain growth. The effectiveness of transition metal carbides in inhibiting WC grains is related to their own thermodynamic stability. The order of their thermodynamic stability is VC > Cr3C2 > NBC > TAC > tic > ZrC > HFC. However, each kind of carbide has a maximum amount that can be added, which has no further effect on inhibiting the growth of WC grains. At a certain temperature, the amount of carbide additives depends on the saturation concentration of the carbide in the binder phase and the content of the binder phase Table 2 shows the solubility of various additives in CO phase. It can be seen from the table that VC and Cr3C2 have the highest solubility in CO phase and they have the lowest binary eutectic temperature, so they are widely used as WC Co grain growth inhibitors.

Application of Grain Growth Inhibitors in Cemented Carbide 5

Rare earth element

Rare earth element is one of the common additives, which can inhibit the grain growth, improve the structure distribution, purify the grain boundary, and play an effective role in strengthening and toughening the cemented carbide. At the same time, rare earth can also reduce the sintering temperature of cemented carbide, which can solve the contradiction between controlling grain growth and Sintering Densification. the increase of the macro compressive stress on the alloy surface is also an important reason for the increase of the strength of WC Co cemented carbide by the addition of rare earth oxides.

Boron and phosphorus

It is found that the sintering temperature of the cemented carbide with boron can be reduced to 1340 ℃, with the decrease of sintering temperature, the micro grains of the alloy are obviously refined, which is conducive to the improvement of the alloy performance, and the addition of boron has little effect on the wettability of the bonding phase and WC phase, and the bending strength of the alloy is not affected. The sintering temperature of WC Co can be reduced to 1050-1100 ℃ by adding a small amount of Ni and P powder. The mechanism is that the eutectic temperature of Ni-P is far lower than the melting point of Co. after adding Ni and P, the liquid phase can appear at a lower temperature, which makes the dissolution and precipitation of solid particles and the formation of framework occur in advance, and the sintering process is more sufficient, thus inhibiting the growth of WC grains.

Copper molybdenum metal inhibitor

The addition of a small amount of Cu to wc-13fe / Co / Ni cemented carbide can refine the spheroidized WC grains. This is mainly because Cu will dissolve into the Fe / Co / Ni binder during the sintering process, reducing the solubility of WC in the binder, thus reducing the rate of grain growth during the dissolution re precipitation process. And copper also spheroidizes WC grains. In the sintering process of cemented carbide, molybdenum is coated around the cemented phase, which improves the wettability between the cemented phase and the cemented phase, so as to refine the particles of cemented phase

Effect of grain growth inhibitor on properties of alloy

The effect of grain growth inhibitors on the properties of the alloy is mainly reflected in the hardness and bending strength of the alloy Different additives have different mechanisms of inhibiting grain size, so different inhibitors of grain growth have different effects on properties.

Transition metal carbides

The addition of VC, Cr 3C 2 and other additives can effectively improve the heat resistance and wear resistance of WC Co cemented carbide. Moreover, the high temperature strength and high temperature hardness of the alloy can be effectively improved when the additive is appropriate, but the room temperature strength of the alloy can be reduced and the alloy becomes brittle. Therefore, the amount of additives must be controlled within a certain range For example, for WC-6% CO and WC-10% Co alloys, the addition of cr2c3 reduced the room temperature bending strength of the alloy. When the content of Cr 2C 3 is 0.3% ~ 0.5% (mass fraction of CO content), the room temperature bending strength of the high Co alloy will not be affected obviously, but for the low Co alloy, the room temperature bending strength will be decreased obviously. Adding TAC and NBC will result in the same result The effect of VC on the microstructure and properties of wc-6.5% Co cemented carbides was found. It was found that VC inhibited the growth of WC grains, which resulted in obvious grain refinement and narrowed the distribution of grain size. The grain size decreased from 0.5-1 μ m without adding VC to 0.15 μ m with adding 2.0% VC. At the same time, the hardness of the alloy is greatly improved by adding VC, and the maximum value is 94.1 HRA when VC content is 2.0%. But it also reduces the strength of the alloy When VC content is 0.5%, the hardness and toughness of the alloy are 93.0hra and 11.2MPa · M 1 / 2, and the comprehensive properties are the highest. The addition of TAC can not only prevent the WC grains from growing too much, but also reduce the carbon content of the alloy

Rare earth element

The hardness of WC-20 (Fe / Co / Ni) alloy increased with the increase of rare earth content. The addition of rare earth can improve the properties of w-co-ti alloy, especially improve the impact resistance of Shejin. At the same time, rare earth can inhibit the grain aggregation and growth of (Ti, w) C solid solution and refine the grain.  When rare earth oxide is added to WC Ni alloy, the strength of bonding phase Ni increases due to dispersion strengthening of rare earth oxide. When the rare earth content is 1.2% ~ 1.6% of bonding metal content, the bending strength of the alloy reaches the maximum value (1680mpa when CeO 2 is added, 1900mpa when Y2O3 is added). The bending strength of WC-8% Co alloy is increased to a certain extent by adding 0.25% ~ 1.00% of the mixed rare earth oxide, and it can be increased by 11.5% when adding 0.25% ~ 0.50% of the rare earth oxide, but the excessive addition of rare earth will lead to the decrease of the bending strength. Therefore, the bending strength of cemented carbide with rare earth elements can be greatly improved.

Cu&Mo metal inhibitors

Adding a small amount of copper into the cemented carbide can not only improve the strength of the alloy, but also improve the impact toughness of the alloy.

When a small amount of copper is added to WC-13% Fe / Co / Ni, the hardness of the alloy decreases, while the bending strength increases greatly. When the amount of copper is about 0.8%, the bending strength and hardness of the alloy are 2370 MPa and hra84.4 respectively. See Table 3 below. When Mo was added to WC Co, the bending strength and India increased with the increase of Mo addition. The bending strength reached the maximum value when Mo addition was 5%, and reached the peak value of 19.25gpa when Mo addition was 7.5%. However, when the amount of Mo is more than 5%, the bending strength decreases gradually, which is due to the embrittlement of the sample caused by the presence of intermetallic compound CO3(Mo, w)3C.

Application of Grain Growth Inhibitors in Cemented Carbide 6

九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 国产一区二区三区视频网站-日韩av影片免费在线观看-日韩av有码免费在线观看-制服丝袜天堂网在线观看| 日韩免费看在线黄色片-国产精品人妇一区二区三区-国产精品网站一区在线观看-国产精品亚洲一区二区三区不卡| 熟妇久久人妻中文字幕-国产精品久久久久精品三级人-亚洲蜜臀人妻中文字幕-国产一区二区内部视频| 亚洲av男人的天堂久久精品-人妻中文字幕一区二区视频-国产男女乱淫真视频播放-国内人妻自拍交换在线视频| 女人高潮久久久久久久久-久久久国产熟女一区二区三区-91在线精品国产丝袜-国产精品日韩亚洲一区二区| 福利一区福利二区刺激-亚洲精品久久麻豆蜜桃-久久av蜜臀人妻一区二区三区-国产av剧情精品播放网站| 精品国产高清一区二区广区-午夜少妇激情视频网站-亚洲av日韩精品一区在线-青草亚洲免费在线观看| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 日韩成人av在线影院-亚洲五月天久操视频在线观看-最新国产AV无码专区亚洲-欧美日韩大香蕉在线视频| 欧美日韩精品视频免费下载-中文字幕一区二区三区伦理-一级特黄大片亚洲高清-午夜欧美日韩精品久久久久| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 日韩中文精品在线字幕-久久精品国产护士小美女-91黑丝女神在线播放-91人妻蝌蚪九色水蜜桃| 久色视频精品在线观看-在线看片免费人成视久网国产-亚洲精品人妻中文字幕-国产一区二区午夜福利在线观看| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 亚洲黄片免费观看高清-精品国产中文字幕av-60分钟三级全黄50岁-国产精品东北重口变态| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 98人妻精品一区二区久久-五月婷婷六月丁香久久综合-国产精品手机在线免费观看-亚洲国产日韩欧美综合| 中文字幕亚洲天堂第一页-国产午夜福利在线视频-亚洲精品中文字幕女同-亚日韩精品一区二区三区| 国产精品自在线拍国产-久久精品韩国日韩精品-久久夜色国产精品亚洲av蜜桃-日韩精品一区二区三区四区免费| 国产精品人人爱一区二区白浆-中文字幕一区二区三区人妻精品-91人妻在线欧美精品不卡-好吊视频一区二区三区在线| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 国内外成人综合免费视频-久久国产精品99久久蜜臀-大三美女口爆吞精视频-亚洲国产一区二区精品性色| 粉嫩精品一区二区三区在线观-中文国产精品久久久私一本-熟女少妇日韩亚洲av-精品国产一区二区三广区精东| 日韩欧美国产亚洲中文-亚洲国产av第一福利网-亚洲欧洲日韩一区二区三区-91精品国产福利线观看久久| 少妇高潮叫床免费网站在线观看-亚洲av狠狠的爱一区二区-激情综合成年免费视频-中文字幕人妻系列在线| av天堂一区二区三区在线观看-一区二区三区在线观看蜜桃-激情在线免费观看国产视频-国产精品国产三级国产三不| 日韩av高清不卡一区二区-国产亚洲性色av大片久久香蕉-国产亚洲欧美韩国日本-国产精品国产三级国产普通话对白| 亚洲中文字幕99精品-国产精品亚洲一区二区久久-国产精品久久久小黄片-国产不卡福利片在线观看| 国色天香精品亚洲精品-日韩精品电影免费观看-亚洲精品中文字幕综合-成人午夜视频福利在线观看| 台湾香港a毛片免费观看-国产美女口爆吞精的后果-亚洲天堂成人免费在线-国模在线视频一区二区三区| 国产大量自拍露脸在线-国产精品综合色区在线观-性色av一区二区三区制服-最新91精品手机国产在线| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 国产精品一二三四区无线乱码-精品亚洲国产成人精品-国产精品蜜桃一区二区三区-黄片av在线免费播放| 亚洲免费国产午夜视频-女同亚洲一区二区三区精品久久-欧美一级黄片高清免费-久久国产亚洲中文字幕| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 亚洲欧美日韩另类影院-亚洲一区二区三区精品春色-精品人妻久久一品二品三品-人妻有码av中文字幕久久午夜| 国产福利亚洲精品精彩在线-日韩在线精品视频免费-亚洲成人国产精品av-日本不卡一区二区三区四区视频| 中出少妇中文字幕一区二区三区-九九久久精品国产亚洲-美女免费是黄的一区二区av-日本在线视频观看91| 国精品视频在线播放不卡-日韩av免费观看在线-亚洲这里只有精品在线观看-免费的精品一区二区三区| 国产精品99一区二区三区-伦理激情婷婷综合五月天-综合久久av一区二区三区-99精品国产在热久久|