色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Background:

In recent years, the annual increase in global CO2 emissions has been a serious threat to the ecological environment in which people live. (There has been 410 ppm in 2018 – data from the National Oceanic and Atmospheric Administration’s Hawaiian Islands Mauna Loa Volcano’s greenhouse gas monitoring station). Therefore, the capture, storage and conversion of CO2 has received wide attention from researchers. Toyota Central Research has used water and carbon dioxide as raw materials to synthesize useful substances using sunlight, and the energy conversion efficiency has increased to the highest 4.6% in the world. BASF in Germany converts carbon dioxide into a carbonate polymer material with a wide range of applications. Bayer can use carbon dioxide in flue gas from thermal power plants as the main raw material for the production of polyurethane materials. There is a stable catalyst market for the production of carbonates, but the utilization of CO2 is still far from enough. The conversion of hydrocarbon fuels is still in the basic research stage of application. China’s 13th Five-Year Plan and the Sino-US Joint Statement on Climate Change have made “carbon reduction” a construction goal, encouraging the conversion of CO2 based fuels. And include it in the “13th Five-Year” National Basic Research Special Plan (Guo Ke Fa Ji [2017] No. 162). The use of solar energy to convert low-cost and abundant CO2 and water into a hydrocarbon fuel with convenient storage, mature technology, wide application fields and huge demand is a green solar chemical conversion technology.

Reconstruction system construction:

In this context, although there has been a lot of research work in the field of CO2 reduction at home and abroad, a lot of work has realized the conversion of CO2 from the perspective of material design, such as semiconductor catalysts for catalytic hydrogen production or degradation of organic matter. The selectivity of the catalytic reaction or product is regulated (Adv. Mater. 2018, 30, 1704663). However, the realization of catalytic reaction and process control are not mature enough. The reaction systems used by most researchers are non-standard “semi-custom” equipment and analysis systems. Therefore, the author believes that material design is important, and the appropriate reaction system and evaluation method are more important. The reaction system refers to the environmental conditions required for the CO2 reduction reaction, such as light, electricity, solution, temperature, pressure, etc.; the detection method refers to the state of the product (such as gas or liquid, selectivity, concentration), and carbon conversion efficiency, photon efficiency Wait.
Among several feasible catalytic CO2 reduction strategies, such as photocatalysis, photoelectrocatalysis, photothermal catalysis, and thermal catalysis, each has its own merits. Techniques for photochemically reducing CO2 and converting it into hydrocarbon fuels that are beneficial to humans are particularly attractive. Because it can be carried out at normal temperature and pressure, synergistic effects can also occur at specific temperatures and pressures. The energy required can be directly or indirectly provided by renewable energy such as solar energy, and the carbon can be recycled.

Catalytic reaction system and product evaluation to improve the efficiency of artificial photosynthesis 1

Figure 1 Catalytic reactor in the form of Batch and Flow (Chem. Asian J. 2016, 11, 425 – 436)
There are two ways to construct the reactor (as shown in Figure 2). One is a fixed volume reactor in which a reaction raw material such as CO2, H2 or H2O, a catalyst or a cocatalyst is placed in a reactor, and a reaction is carried out by injecting light, electricity, heat or the like into the catalyst. The second is a Flow Method, which is a process in which a feed gas is introduced into the reactor at a certain rate and, after a certain period of reaction, flows out of the reactor. The study found that the reactor material is generally divided into polytetrafluoroethylene, quartz glass, stainless steel. PTFE has the advantages of high strength, corrosion resistance and good sealing, but has a low temperature limit, generally 250 degrees. The quartz reactor has the advantages of temperature resistance and corrosion resistance, but is brittle and has low compressive strength. The metal stainless steel reactor has the advantages of pressure resistance and easy processing, but is easy to react with the reactants. You can choose the right reactor for your needs. At the same time, in order to timely introduce or take out gas or product, a few holes should be opened in the reactor design to facilitate the injection of raw materials.
In addition, the more common reaction forms are solid-liquid reactions: in the reactor, a saturated solution of CO2 gas is used as a raw material, or an electrolyte is injected in an electrocatalytic reduction reactor (Fig. 2). The intrinsic reaction mechanism of carbon dioxide electroreduction involves a complex path of solid-liquid phase three-phase boundaries. Therefore, the rational design of the catalyst geometry allows for as many reactive sites as possible to promote proton and electron transfer at the interface.

Catalytic reaction system and product evaluation to improve the efficiency of artificial photosynthesis 2

Figure 2 Schematic diagram of solid-gas and solid-liquid reaction (Chem. Commun., 2016, 52, 35–59)

Catalytic reaction system and product evaluation to improve the efficiency of artificial photosynthesis 3

Figure 3 Schematic diagram of photoelectrocatalytic CO2 reduction reactor (J. Photon. Energy. 2017, 7(1), 012005)

Material handling:

The treatment of the catalyst in the reactor is different depending on the morphology of the material. For example, the powder material can be laid on the surface of the quartz glass; the film material can be placed in the reactor by folding, punching, etc.; the bulk material (porous ceramic) can increase the contact rate between the gas and the catalyst by gas flow through to realize CO2 Restore.
Light source selection: The choice of catalytic reaction source is also very important. It is worthwhile for researchers to pay attention to the problem of effective optical power density. Therefore, the purchased light source, such as xenon lamp, generally has a factory power of more than a few solar light intensity (one sun is equivalent to 1 kW/m2). Therefore, it can be regulated by a heating filter. Before designing the reaction, the optical power meter should be used to test the actual value. The intensity of the light source used.
Product Evaluation: Evaluation of the catalytic product is the last and most important part of the overall system. The products taken are generally classified into offline (commonly known as “needle type”) and online detection (online). Depending on the nature of the catalytic product, the detection equipment generally has gas chromatography, mass spectrometry, and liquid chromatography. Professors such as Prof. Ye jinhua, Ozin, Zou zhigang, Yang peidong, Li can, Xie yi, Wu lizhu, and Wang xinchen are widely used.
This article focuses on gas chromatography, the most common device used in recent studies. The core components typically include detectors, columns, methane reformers, six-way valves, and loops. The detector generally uses two types (hydrogen flame detector) FID and (thermal pool detector) TCD. FID can detect carbon-containing organic matter with high sensitivity, while TCD can detect all compounds, including hydrogen, carbon monoxide, carbon dioxide, etc., but with a sensitivity angle (~1000 ppm). Therefore, most researchers choose to install the FID detector, and the residual CO2 or CO in the reaction process can be detected by a conversion furnace with a nickel catalyst. More importantly, after the product is vaporized, the columns used in the carrier gas flow are also different, which affects the detection sensitivity. For example, the FID detector generally uses a capillary column, and the TCD detector uses a TDX01 column. As shown in the chromatogram design shown below, many manufacturers at home and abroad can provide customized products, such as Agilent, Tianmei, Yanuo, Fuli and so on. Of course, because the products of CO2 reduction are very complicated, there are small molecules such as H2 and CO, as well as organic molecules such as C1, CH3OH, formic acid, and ethanol, such as C1 and C2. The single column detector cannot be completely detected at one time, and TCD and TCD are required. The FID is combined and the different types of columns are used together.

Carbon pollution:

A key issue that requires special attention in CO2 reduction research is carbon pollution. Studies have shown that organic solvents including solvents, reactants and surfactants used in catalyst preparation may leave carbonaceous residues in the final product and decompose into small molecules such as CO and CH4 during the catalytic reaction, resulting in catalytic activity. Overrated. Therefore, it is necessary to confirm that the measured product does come from the decomposition of CO2 rather than the decomposition of carbonaceous residue. Isotope 13CO2 labeling is an effective technique for verifying the source of reducing products and has been widely used in many studies.

Conclusion:

Catalytic reduction of CO2 to hydrocarbons has become a green means of mitigating energy and environmental problems. Based on many years of research, Xiaobian has compiled important knowledge of catalytic reaction systems and product evaluation, and hopes to help researchers in the same field to provide a good platform for the design of high-efficiency catalysts.

Leave a Reply

Your email address will not be published. Required fields are marked *

免费观看国产裸体视频-久久亚洲精精品中文字幕早川悠里-99精品国产一区二区青青牛奶-久久精品成人av免费观看| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 国产美女口爆吞精服务-亚洲无人区码一码二码三码-久久精品99国产精品最新-日本少妇激情在线视频| 青草视频在线观看精品综合-黑人巨大精品欧美久久-日本理论三级在线观看-九九热九九热这里只有精品| 日韩bd高清电影一区二区-久久亚洲国产精品久久-亚洲精品国产精品av-大胸少妇av网站在线播放| 九九热在线免费视频精品-偷拍日本美女厕所尿尿-深夜老司机福利在线观看-偷拍精品视频日本久久| 成人国产精品一区二区香蕉-一区二区三区欧美日韩电影在线观看-午夜福利视频合集一区二区-人妻少妇被粗大爽在线| 国产午夜亚洲精品福利-日韩精品中文字幕在线免费-亚洲久久精品中文字幕-狠狠亚洲婷婷综合色香五月加勒比| 一区二区在线观看黑人-久久久精品人妻一区二区三区综合-成人内射国产免费观看-四虎在线免费视频观看| 99久久国产自偷自自偷蜜月-日韩熟女激情中文字幕-亚洲狼人社区av在线观看-四虎成人精品国产永久| 午夜影视网站在线观看-欧美成年人性生活在线观看-好看的日韩电影一区二区三区-日本中文字幕在线在线| 成年人有性生活正常吗-亚洲熟女熟妇五十路熟女熟妇-亚洲精品一区二区高清在线-日本视频在线播放91| 女人毛茸茸的外阴视频-成人激情午夜福利视频-国产精品性色一区二区三区-国产中文字幕欧美激情| 最近中文字幕国产精品-国产一级片黄片免费观看-日本一区二区三区日韩欧美-亚洲一区电影网站在线观看| 成人一区二区三区免费观看-国内久久偷拍精品视频-欧美人与性动α欧美精品z-性感美女勾引男人视频| 尤物视频在线观看网址-欧美午夜精品久久福利-久久这里只有精品视频5-国产精品成人综合色区| 色男人天堂综合久久av-蜜桃精品一区二区三区蜜桃臀-国产粉嫩高中生第一次不戴套-成人激情自拍视频在线观看| 深夜福利在线观看日韩-国产成人夜色高潮在线观看-熟女人妻少妇精品视频-97在线观看完整免费| 日韩精品中文字幕人妻一区-国产免费午夜福利一区二区-亚洲国产精品久久亚洲精品-亚洲伦理一区二区三区中文| 亚洲国产高清在线一区二区三区-最近免费视频观看在线播放-中出内射视频在线播放-97碰碰日本乱偷人妻禁片| 日韩人妻一区二区三区免费-日韩午夜精品中文字幕-国产三级精品大乳人妇-一级女性全黄久久生活片免费| 亚洲精品一区中文字幕在线-开心五月综合五月综合-日韩av在线播放中文-国产臀交视频在线观看| 九九热在线视频中文字幕-午夜激情在线观看不卡-国产精彩激情视频在线观看-人妻丰满熟妇九九久久| 国内一级一片内射免费视频观-最新国产在线视频在线-免费在线观看国产特级片-国产午夜免费观看在线视频| 99热久久热在线视频-久久精品国产亚洲av成人男男-国产精品日韩精品久久99-中文字幕在线日本乱码| 成人精品一区二区三区不卡-十八禁啪啪啪一区二区三区-后入黑丝美女在线观看-国产熟女啪啪免费视频| 亚洲一区二区三区视频观看-日韩精品一二三四区视频-亚洲码与欧洲码区别入口-日韩精品大片一区二区三区| 国产在线观看av自拍-成人自拍小视频在线看-十八禁网站在线免费观看-丰满的熟妇露脸大屁股| 国产精品第五页在线观看-亚洲欧美日韩丝袜另类一区-国产懂色av一区二区三区-午夜亚洲欧美日韩在线| 亚洲伊人色综合网站亚洲伊人-香蕉久久国产超碰青草91-激情综合七月插插综合-亚洲一区二区三区夏目彩春| 少妇裸淫交视频免费看-欧美日韩中文字幕第一页-91精品看黄网站在线观看-国产精品一区二区三区色噜噜| 国产亚洲欧美日韩俺去啦-91香蕉国产极品在线播放-国产夫妻生活自拍视频-永久免费的成年视频网| 精品国产亚洲av蜜臀-欧美亚洲伦理在线视频-久久亚洲国产成人影院av-国产精品99蜜臀久久不卡二区| 京香一区二区三区中文字幕-国内在线精品一区二区三区-久久亚洲精品色噜噜狠狠-亚洲成av人一区二区三区| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 日韩网激情视频在线观看-国产午夜98福利视频在线观看-国产精品尤物极品露脸呻吟-日韩手机在线视频观看成人| 久久夜色国产精品亚洲-国产视频一区二区三区免费观看-亚洲一区二区成人在线观看-日韩精品一区二区三区在线视频| 欧美日韩在线无卡免费播v-91麻精品国产91久久久久-中文字幕亚洲综合久久菠萝蜜-久久青青草原资源福利| 成年女黄网站色免费视频-福利在线一区二区三区-黑人狂躁日本妞一区二区三区-国产亚洲精品福利视频| 亚洲国产成人不卡高清麻豆-精品国产精品三级在线专区-亚洲欧美国产日韩一区-亚洲高清日本一区二区| 亚洲精品毛片免费观看-精品一区二区三区四区激情-特黄特色大片女生高潮久久-欧美午夜福利视频自拍|